Skip to main content

Advertisement

Log in

Super-magnetization of pectin from orange-peel biomass for sulfamethoxazole adsorption

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In recent decades, the release of emerging pharmaceutical contaminants has been recognized as a challenging environmental issue. This study focuses on the adsorption of sulfamethoxazole (SMX) by pectin (Pec)-based bio-adsorbent. Pec was extracted from orange peel-waste biomass (OPB) by a microwave-assisted extraction method. Further, different concentrations of Pec from OPB (Pec-OPB); 0.5, 1, 2 and 4g were super-magnetized with Fe3O4 nanoparticles (denoted as Fe3O4@Pec-OPB(0.5g), Fe3O4@Pec-OPB(1g), Fe3O4@Pec-OPB(2g) and Fe3O4@Pec-OPB(4g), respectively). Among these synthesized bio-adsorbents, Fe3O4@Pec-OPB(1g) gave significant SMX adsorption and hence studied further in detail. Surface-morphology, structure, functional-groups, magnetic-property, and elemental-composition of facile of Fe3O4@Pec-OPB(1g) was characterized by standard analytical techniques. Different parameters for SMX adsorption on Fe3O4@Pec-OPB(1g) were investigated, such as optimal pH (4.0), kinetics (best-fitted pseudo-second-order kinetic model) and isotherm models (best-fitted Redlich-Peterson model). The maximum adsorption capacity (qm) of Fe3O4@Pec-OPB(1g) was 120 mg g−1 of SMX. Thermodynamic analysis corroborated the endothermic nature of the adsorption process. Therefore, the nano-bio-adsorbent Fe3O4@Pec-OPB(1g) exhibits excellent potential for capturing the SMX from water, suggesting that Fe3O4@Pec-OPB(1g) could be a viable option for adsorptive reclamation of hazardous cationic pollutants from water.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1G1A1009363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Suk Sung.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, A.A., Sharma, B., Saratale, G.D. et al. Super-magnetization of pectin from orange-peel biomass for sulfamethoxazole adsorption. Cellulose 27, 3301–3318 (2020). https://doi.org/10.1007/s10570-020-02988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-02988-z

Keywords

Navigation