Skip to main content

Advertisement

Log in

Modulation of α7nAchR by Melatonin Alleviates Ischemia and Reperfusion-Compromised Integrity of Blood–Brain Barrier Through Inhibiting HMGB1-Mediated Microglia Activation and CRTC1-Mediated Neuronal Loss

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The only food and drug administration (FDA)-approved drug currently available for the treatment of acute ischemic stroke is tissue plasminogen activator (tPA), yet the therapeutic benefits of this drug are partially outweighed by the increased risk of hemorrhagic transformation (HT). Analysis of the NIH trial has shown that cigarette smoking protected tPA-treated patients from HT; however, the underlying mechanism is not clear. Nicotinic acetylcholine receptors (nAChR) has shown anti-inflammatory effect and modulation nAChR could be a strategy to reduce ischemia/reperfusion-induced blood–brain barrier (BBB) damage. Since melatonin could regulate the expression of α7nAchR and melatonin’s neuroprotective effect against ischemic injury is mediated via α7nAChR modulation, here, we aim to test the hypothesis that melatonin reduces ischemia and reperfusion (I/R)-induced BBB damage through modulation of α7nACh receptor (α7nAChR). Mice were subjected to 1.5 h ischemia and 24 h reperfusion and at the onset of reperfusion, mice received intraperitoneal administration (i.p.) of either drug or saline. Mice were randomly assigned into five groups: Saline; α7nAChR agonist PNU282987; Melatonin; Melatonin+Methyllycaconitine (MLA, α7nAChR antagonist), and MLA group. BBB permeability was assessed by detecting the extravasation of Evan’s blue and IgG. Our results showed that I/R significantly increased BBB permeability accompanied by occludin degradation, microglia activation, and high mobility group box 1 (HMGB1) release from the neuron. In addition, I/R significantly induced neuronal loss accompanied by the decrease of CREB-regulated transcriptional coactivator 1 (CRTC1) and p-CREB expression. Melatonin treatment significantly inhibited the above changes through modulating α7nAChR. Taken together, these results demonstrate that melatonin provides a protective effect on ischemia/reperfusion-induced BBB damage, at least in part, depending on the modulation of α7nAChR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data are available from the corresponding author upon reasonable request

References

  • An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P, Chen J (2014) Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 115:6–24

    CAS  PubMed  Google Scholar 

  • Beinat C, Banister SD, Herrera M, Law V, Kassiou M (2015) The therapeutic potential of alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs 29(7):529–542

    CAS  PubMed  Google Scholar 

  • Bencherif M, Narla ST, Stachowiak MS (2014) Alpha7 neuronal nicotinic receptor: a pluripotent target for diseases of the central nervous system. CNS Neurol Disord Drug Targets 13(5):836–845

    CAS  PubMed  Google Scholar 

  • Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, Li J, Malysz J, Markosyan S, Marsh K, Meyer MD, Nikkel AL, Radek RJ, Robb HM, Timmermann D, Sullivan JP, Gopalakrishnan M (2007) Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci 27(39):10578–10587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TY, Lee MY, Chen HY, Kuo YL, Lin SC, Wu TS, Lee EJ (2006) Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice. J Pineal Res 40(3):242–250

    CAS  PubMed  Google Scholar 

  • Chen HY, Chen TY, Lee MY, Chen ST, Hsu YS, Kuo YL, Chang GL, Wu TS, Lee EJ (2006) Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 41(2):175–182

    PubMed  Google Scholar 

  • Chen B, Friedman B, Cheng Q, Tsai P, Schim E, Kleinfeld D, Lyden PD (2009) Severe blood-brain barrier disruption and surrounding tissue injury. Stroke 40(12):e666-674

    PubMed  PubMed Central  Google Scholar 

  • Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB, Montminy M (2003) TORCs: transducers of regulated CREB activity. Mol Cell 12(2):413–423

    CAS  PubMed  Google Scholar 

  • da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362

    PubMed  PubMed Central  Google Scholar 

  • Dash PK, Zhao J, Kobori N, Redell JB, Hylin MJ, Hood KN, Moore AN (2016) Activation of alpha 7 cholinergic nicotinic receptors reduce blood-brain barrier permeability following experimental traumatic brain injury. J Neurosci 36(9):2809–2818

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Wit NM, Vanmol J, Kamermans A, Hendriks J, de Vries HE (2016) Inflammation at the blood-brain barrier: The role of liver X receptors. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2016.09.015

    Article  PubMed  Google Scholar 

  • Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH (2016) Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol 131(3):347–363

    PubMed  Google Scholar 

  • Duris K, Manaenko A, Suzuki H, Rolland WB, Krafft PR, Zhang JH (2011) alpha7 nicotinic acetylcholine receptor agonist PNU-282987 attenuates early brain injury in a perforation model of subarachnoid hemorrhage in rats. Stroke 42(12):3530–3536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellwood KB, Yen YM, Johnson RC, Carey M (2000) Mechanism for specificity by HMG-1 in enhanceosome assembly. Mol Cell Biol 20(12):4359–4370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein RS, Gallowitsch-Puerta M, Yang L, Rosas-Ballina M, Huston JM, Czura CJ, Lee DC, Ward MF, Bruchfeld AN, Wang H, Lesser ML, Church AL, Litroff AH, Sama AE, Tracey KJ (2006) Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 25(6):571–574

    CAS  PubMed  Google Scholar 

  • Grossman AW, Broderick JP (2013) Advances and challenges in treatment and prevention of ischemic stroke. Ann Neurol 74(3):363–372

    CAS  PubMed  Google Scholar 

  • Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK, Liu KJ, Shen J (2012) Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 120(1):147–156

    CAS  PubMed  Google Scholar 

  • Han Z, Shen F, He Y, Degos V, Camus M, Maze M, Young WL, Su H (2014) Activation of alpha-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS One 9(8):e105711

    PubMed  PubMed Central  Google Scholar 

  • Han Z, Li L, Wang L, Degos V, Maze M, Su H (2014) Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture. J Neurochem 131(4):498–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature neuroscience 5(5):405–414

    CAS  PubMed  Google Scholar 

  • Hayakawa K, Qiu J, Lo EH (2010) Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann N Y Acad Sci 1207:50–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobson SR, Gurusinghe S, Lim R, Alers NO, Miller SL, Kingdom JC, Wallace EM (2018) Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res 65(3):e12508

    PubMed  Google Scholar 

  • Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA (2000) Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 77(1):65–75

    CAS  PubMed  Google Scholar 

  • Jaillard A, Cornu C, Durieux A, Moulin T, Boutitie F, Lees KR, Hommel M (1999) Hemorrhagic transformation in acute ischemic stroke The MAST-E study. MAST-E Group. Stroke 30(7):1326–1332

    CAS  PubMed  Google Scholar 

  • Jeong JK, Park SY (2015) Melatonin regulates the autophagic flux via activation of alpha-7 nicotinic acetylcholine receptors. J Pineal Res 59(1):24–37

    CAS  PubMed  Google Scholar 

  • Jickling GC, Liu D, Stamova B, Ander BP, Zhan X, Lu A, Sharp FR (2014) Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab 34(2):185–199

    CAS  PubMed  Google Scholar 

  • Jin X, Liu J, Liu KJ, Rosenberg GA, Yang Y, Liu W (2013) Normobaric hyperoxia combined with minocycline provides greater neuroprotection than either alone in transient focal cerebral ischemia. Exp Neurol 240:9–16

    CAS  PubMed  Google Scholar 

  • Jin X, Liu J, Liu W (2014) Early ischemic blood brain barrier damage: A potential indicator for hemorrhagic transformation following tissue plasminogen activator (tPA) thrombolysis? Curr Neurovasc Res 11(3):254–262

    CAS  PubMed  Google Scholar 

  • Khatri R, McKinney AM, Swenson B, Janardhan V (2012) Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 79(13 Suppl 1):S52-57

    PubMed  Google Scholar 

  • Kimura I, Dohgu S, Takata F, Matsumoto J, Kawahara Y, Nishihira M, Sakada S, Saisho T, Yamauchi A, Kataoka Y (2019) Activation of the alpha7 nicotinic acetylcholine receptor upregulates blood-brain barrier function through increased claudin-5 and occludin expression in rat brain endothelial cells. Neurosci Lett 694:9–13

    CAS  PubMed  Google Scholar 

  • Krafft PR, Altay O, Rolland WB, Duris K, Lekic T, Tang J, Zhang JH (2012) alpha7 nicotinic acetylcholine receptor agonism confers neuroprotection through GSK-3beta inhibition in a mouse model of intracerebral hemorrhage. Stroke 43(3):844–850

    CAS  PubMed  Google Scholar 

  • Krafft PR, Caner B, Klebe D, Rolland WB, Tang J, Zhang JH (2013) PHA-543613 preserves blood-brain barrier integrity after intracerebral hemorrhage in mice. Stroke 44(6):1743–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee FY, Sun CK, Sung PH, Chen KH, Chua S, Sheu JJ, Chung SY, Chai HT, Chen YL, Huang TH, Huang CR, Li YC, Luo CW, Yip HK (2018) Daily melatonin protects the endothelial lineage and functional integrity against the aging process, oxidative stress, and toxic environment and restores blood flow in critical limb ischemia area in mice. J Pineal Res 65(2):e12489

    PubMed  Google Scholar 

  • Lees Kennedy R, Bluhmki Erich, von Kummer Rüdiger, Brott Thomas G, Toni Danilo, Grotta James C, Albers Gregory W, Kaste Markku, Marler John R, Hamilton Scott A, Tilley Barbara C, Davis Stephen M, Donnan Geoffrey A, Hacke Werner (2010) Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375(9727):1695–1703

    CAS  PubMed  Google Scholar 

  • Li M, Chen S, Shi X, Lyu C, Zhang Y, Tan M, Wang C, Zang N, Liu X, Hu Y, Shen J, Zhou L, Gu Y (2018) Cell permeable HMGB1-binding heptamer peptide ameliorates neurovascular complications associated with thrombolytic therapy in rats with transient ischemic stroke. J Neuroinflammation 15(1):237

    PubMed  PubMed Central  Google Scholar 

  • Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (2018) Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 135(3):311–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Hendren J, Qin XJ, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108(3):811–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu WC, Sun Y, Shen X, Wang X, Shu H, Pan R, Liu CF, Liu W, Liu KJ, Jin X (2017) Normobaric hyperoxia extends neuro- and vaso-protection of N-Acetylcysteine in transient focal ischemia. Mol Neurobiol 54(5):3418–3427

    CAS  PubMed  Google Scholar 

  • Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W (2020) Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-020-00985-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415

    CAS  PubMed  Google Scholar 

  • Mabuchi T, Kitagawa K, Kuwabara K, Takasawa K, Ohtsuki T, Xia Z, Storm D, Yanagihara T, Hori M, Matsumoto M (2001) Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci 21(23):9204–9213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markus RP, Santos JM, Zago W, Reno LA (2003) Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3H]glutamate release in rat cerebellum slices. J Pharmacol Exp Ther 305(2):525–530

    CAS  PubMed  Google Scholar 

  • Markus RP, Silva CL, Franco DG, Barbosa EM Jr, Ferreira ZS (2010) Is modulation of nicotinic acetylcholine receptors by melatonin relevant for therapy with cholinergic drugs? Pharmacol Ther 126(3):251–262

    CAS  PubMed  Google Scholar 

  • Moretti R, Zanin A, Pansiot J, Spiri D, Manganozzi L, Kratzer I, Favero G, Vasiljevic A, Rinaldi VE, Pic I, Massano D, D’Agostino I, Baburamani A, La Rocca MA, Rodella LF, Rezzani R, Ek J, Strazielle N, Ghersi-Egea JF, Gressens P, Titomanlio L (2015) Melatonin reduces excitotoxic blood-brain barrier breakdown in neonatal rats. Neuroscience 311:382–397

    CAS  PubMed  Google Scholar 

  • Naik P, Fofaria N, Prasad S, Sajja RK, Weksler B, Couraud PO, Romero IA, Cucullo L (2014) Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe? BMC Neurosci 15:51

    PubMed  PubMed Central  Google Scholar 

  • National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333(24):1581–1587

    Google Scholar 

  • Niranjan R, Nath C, Shukla R (2012) Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 46(9):1167–1177

    CAS  PubMed  Google Scholar 

  • Nishibori M, Wang D, Ousaka D, Wake H (2020) High Mobility Group Box-1 and Blood-Brain Barrier Disruption. Cells. https://doi.org/10.3390/cells9122650

    Article  PubMed  PubMed Central  Google Scholar 

  • Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, Soares MP, Lopez MG (2013) The microglial alpha7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal 19(11):1135–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parada E, Buendia I, Leon R, Negredo P, Romero A, Cuadrado A, Lopez MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56(2):204–212

    CAS  PubMed  Google Scholar 

  • Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 23(1):41–45

    CAS  PubMed  Google Scholar 

  • Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, Bosco DB, Wu LJ, Tian DS (2019) Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 35(5):921–933

    PubMed  PubMed Central  Google Scholar 

  • Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28(5):927–938

    CAS  PubMed  Google Scholar 

  • Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011) SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron 69(1):106–119

    CAS  PubMed  Google Scholar 

  • Semenova S, Jin X, McClure-Begley TD, Tadman MP, Marks MJ, Markou A (2018) Differential effects of withdrawal from intermittent and continuous nicotine exposure on reward deficit and somatic aspects of nicotine withdrawal and expression of alpha4beta2* nAChRs in Wistar male rats. Pharmacol Biochem Behav 171:54–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shichita T, Ago T, Kamouchi M, Kitazono T, Yoshimura A, Ooboshi H (2012) Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem 123(Suppl 2):29–38

    CAS  PubMed  Google Scholar 

  • Singh V, Roth S, Veltkamp R, Liesz A (2016) HMGB1 as a Key Mediator of Immune Mechanisms in Ischemic Stroke. Antioxid Redox Signal 24(12):635–651

    CAS  PubMed  Google Scholar 

  • Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, Gao Y, Pietras K, Mann K, Yepes M, Strickland DK, Betsholtz C, Eriksson U, Lawrence DA (2008) Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 14(7):731–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Chen X, Zhang X, Shen X, Wang M, Wang X, Liu WC, Liu CF, Liu J, Liu W, Jin X (2017) β2-Adrenergic receptor-mediated HIF-1alpha upregulation mediates blood brain barrier damage in acute cerebral ischemia. Front Mol Neurosci 10:257

    PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Nagata E, Suzuki S, Dembo T, Nogawa S, Fukuuchi Y (1999) Immunohistochemical analysis of cyclic AMP response element binding protein phosphorylation in focal cerebral ischemia in rats. Brain Res 818(2):520–526

    CAS  PubMed  Google Scholar 

  • The NINDS t-PA Stroke Study Group (1997) Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28(11):2109–2118

    Google Scholar 

  • Verrijdt G, Haelens A, Schoenmakers E, Rombauts W, Claessens F (2002) Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. Biochem J 361(Pt 1):97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Metz C, Miller EJ, Tracey KJ, Ulloa L (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 10(11):1216–1221

    CAS  PubMed  Google Scholar 

  • Wang Q, Wang F, Li X, Yang Q, Xu N, Huang Y, Zhang Q, Gou X, Chen S, Xiong L (2012) Electroacupuncture pretreatment attenuates cerebral ischemic injury through alpha7 nicotinic acetylcholine receptor-mediated inhibition of high-mobility group box 1 release in rats. J Neuroinflammation 9:24

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu Y, Sun Y, Liu W, Jin X (2016) Blood brain barrier breakdown was found in non-infarcted area after 2-h MCAO. J Neurol Sci 363:63–68

    CAS  PubMed  Google Scholar 

  • Wang X, Xue GX, Liu WC, Shu H, Wang M, Sun Y, Liu X, Sun YE, Liu CF, Liu J, Liu W, Jin X (2017) Melatonin alleviates lipopolysaccharide-compromised integrity of blood-brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell 16(2):414–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G (2012) Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 379(9834):2364–2372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Won S, Sayeed I, Peterson BL, Wali B, Kahn JS, Stein DG (2015) Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways. PLoS One 10(3):e0122821

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Jalal FY, Thompson JF, Walker EJ, Candelario-Jalil E, Li L, Reichard RR, Ben C, Sang QX, Cunningham LA, Rosenberg GA (2011) Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-alpha/TACE in focal cerebral ischemia in mice. J Neuroinflammation 8:108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guan D, Lei L, Lu J, Liu JQ, Yang G, Yan C, Zhai R, Tian J, Bi Y, Fu F, Wang H (2018) H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicol Appl Pharmacol 341:98–105

    CAS  PubMed  Google Scholar 

  • Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, Date I, Yoshino T, Ohtsuka A, Mori S, Nishibori M (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42(5):1420–1428

    CAS  PubMed  Google Scholar 

  • Zhang X, Shen X, Dong J, Liu WC, Song M, Sun Y, Shu H, Towse CL, Liu W, Liu CF, Jin X (2019) Inhibition of Reactive Astrocytes with Fluorocitrate Ameliorates Learning and Memory Impairment Through Upregulating CRTC1 and Synaptophysin in Ischemic Stroke Rats. Cell Mol Neurobiol 39(8):1151–1163

    CAS  PubMed  Google Scholar 

  • Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, Ni L, Lai Z, Wang X, Liu C (2018) The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial. J Pineal Res 65(4):e12521

    PubMed  Google Scholar 

  • Zhu F, Chong Lee Shin OL, Xu H, Zhao Z, Pei G, Hu Z, Yang J, Guo Y, Mou J, Sun J, Zhu H, Wang Y, Wang M, Yang Q, Liao W, Xu G, Zeng R, Yao Y (2017) Melatonin promoted renal regeneration in folic acid-induced acute kidney injury via inhibiting nucleocytoplasmic translocation of HMGB1 in tubular epithelial cells. American journal of translational research 9(4):1694–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zidovetzki R, Chen P, Fisher M, Hofman FM, Faraci FM (1999) Nicotine increases plasminogen activator inhibitor-1 production by human brain endothelial cells via protein kinase C-associated pathway. Stroke 30(3):651–655

    CAS  PubMed  Google Scholar 

  • Zou D, Luo M, Han Z, Zhan L, Zhu W, Kang S, Bao C, Li Z, Nelson J, Zhang R, Su H (2017) Activation of Alpha-7 Nicotinic Acetylcholine Receptor Reduces Brain Edema in Mice with Ischemic Stroke and Bone Fracture. Mol Neurobiol 54(10):8278–8286

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81870973, 81671145, 81701316, 81573750, 81473491), Jiangsu Provincial College of Natural Science research project (17KJB180012), by Suzhou Science and Technology for People’s Livelihood (sys2018025). This work was also supported by the Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine) (Grant No WDCM2019007).

Author information

Authors and Affiliations

Authors

Contributions

GQZ and XJ are the principal investigators at the two collaborating institutions and are responsible for project design, supervision of technical personnel, interpretation of results, and preparation of manuscript drafts. HL, JZ, and WLL provided advice on experimental design and interpretation and comments on the manuscript. SC,YS, FL, XZHANG, XH, XZHAO, and YL performed experiments, analyzed the data, made the figures, and drafted the manuscript.

Corresponding authors

Correspondence to Guo-qing Zheng or Xinchun Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 228 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Sun, Y., Li, F. et al. Modulation of α7nAchR by Melatonin Alleviates Ischemia and Reperfusion-Compromised Integrity of Blood–Brain Barrier Through Inhibiting HMGB1-Mediated Microglia Activation and CRTC1-Mediated Neuronal Loss. Cell Mol Neurobiol 42, 2407–2422 (2022). https://doi.org/10.1007/s10571-021-01122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-021-01122-2

Keywords

Navigation