Skip to main content
Log in

Duality of nonconvex optimization with positively homogeneous functions

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider an optimization problem with positively homogeneous functions in its objective and constraint functions. Examples of such positively homogeneous functions include the absolute value function and the p-norm function, where p is a positive real number. The problem, which is not necessarily convex, extends the absolute value optimization proposed in Mangasarian (Comput Optim Appl 36:43–53, 2007). In this work, we propose a dual formulation that, differently from the Lagrangian dual approach, has a closed-form and some interesting properties. In particular, we discuss the relation between the Lagrangian duality and the one proposed here, and give some sufficient conditions under which these dual problems coincide. Finally, we show that some well-known problems, e.g., sum of norms optimization and the group Lasso-type optimization problems, can be reformulated as positively homogeneous optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aravkin, A.Y., Burke, J.V., Drusvyatskiy, D., Friedlander, M.P., MacPhee, K.: Foundations of gauge and perspective duality. arXiv preprint arXiv:1702.08649 (2017)

  3. Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48(1), 45–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  5. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008, IEEE, pp. 3869–3872 (2008)

  6. Eldar, Y.C., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory 55(11), 5302–5316 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Freund, R.M.: Dual gauge programs, with applications to quadratic programming and the minimum-norm problem. Math. Program. 38(1), 47–67 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedlander, M.P., Macedo, I., Pong, T.K.: Gauge optimization and duality. SIAM J. Optim. 24(4), 1999–2022 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, S., Huang, Z.: A note on absolute value equations. Optim. Lett. 4(3), 417–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, S., Huang, Z., Zhang, Q.: A generalized Newton method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 235(5), 1490–1501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirmaci, U.S., Bakula, M.K., Özdemir, M.E., Pecaric, J.E.: On some inequalities for \(p-\)norms. J. Inequal. Pure Appl. Math. 9(1), 1–8 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  13. Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1(1), 3–8 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2), 359–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meier, L., van de Geer, S., Bühlmann, P.: The group Lasso for logistic regression. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 70(1), 53–71 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miao, X., Yang, J., Hu, S.: A generalized Newton method for absolute value equations associated with circular cones. Appl. Math. Comput. 269, 155–168 (2015)

    MathSciNet  Google Scholar 

  19. Mourad, N., Reilly, J.P.: Minimizing nonconvex functions for sparse vector reconstruction. IEEE Trans. Signal Process. 58(7), 3485–3496 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rohn, J.: A theorem of the alternatives for the equation \(ax+ b|x|= b\). Linear Multilinear Algebra 52(6), 421–426 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rohn, J.: An algorithm for solving the absolute value equation. Electron. J. Linear Algebra 18(5), 589–599 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Stojnic, M., Parvaresh, F., Hassibi, B.: On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57(8), 3075–3085 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolf, G.W.: Facility Location: Concepts, Models, Algorithms and Case Studies. Taylor & Francis, Routledge (2011)

    Google Scholar 

  25. Xue, G., Ye, Y.: An efficient algorithm for minimizing a sum of \(p-\)norms. SIAM J. Optim. 10(2), 551–579 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yamanaka, S., Fukushima, M.: A branch-and-bound method for absolute value programs. Optimization 63(2), 305–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, C., Wei, Q.J.: Global and finite convergence of a generalized Newton method for absolute value equations. J. Optim. Theory Appl. 143(2), 391–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Ellen. H. Fukuda for helpful comments and suggestions. This work was supported in part by a Grant-in-Aid for Scientific Research (C) (17K00032) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Yamanaka.

Appendix

Appendix

The following proposition shows that the dual of the p-norm function is the \(\infty \)-norm even when p is less than 1.

Proposition A.1

Suppose that \(p \in (0, 1)\). Then, the dual of the p-norm function is equal to the \(\infty \)-norm.

Proof

Let \(y \in \mathbb {R}^n\) be an arbitrary vector. If \(y = 0\), this proposition clearly holds. If \(y \ne 0\), from Definition 2.3, we obtain

$$\begin{aligned} \Vert y \Vert _p^*= & {} \sup \{ x^T y \, | \, \Vert x \Vert _p \le 1 \} \\\le & {} \sup \{ | x^T y | \, | \, \Vert x \Vert _p \le 1 \} \\\le & {} \sup \biggl \{ \sum _{i=1}^n | x_i | | y_i | \, | \, \Vert x \Vert _p \le 1 \biggr \} \\\le & {} \max _j | y_j | \left( \sup \biggl \{ \sum _{i=1}^n | x_i | \, | \, \Vert x \Vert _p \le 1 \biggr \} \right) \\= & {} \max _j | y_j | \biggl ( \sup \{ \Vert x \Vert _1 \, | \, \Vert x \Vert _p \le 1 \} \biggr ). \end{aligned}$$

Since \(p \in (0, 1)\), we note that \(\Vert x \Vert _1 \le \Vert x \Vert _p\) holds [11]. Then, we have

$$\begin{aligned} \Vert y \Vert _p^* \le \max _j | y_j | \biggl ( \sup \{ \Vert x \Vert _p \, | \, \Vert x \Vert _p \le 1 \} \biggr ) = \max _j | y_j | = \Vert y \Vert _\infty . \end{aligned}$$

Now, take an arbitrary \(i_0 \in \mathop {\mathrm{argmax}}\limits _i | y_i |\), and define \(\bar{x}_i\) as follows:

$$\begin{aligned} \bar{x}_i = \left\{ \begin{array}{ll} {\text {sign}}(y_i), &{} \quad \mathrm {if} \quad i = i_0, \\ 0, &{} \quad \mathrm {otherwise}, \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} {\text {sign}}(y_i) = \left\{ \begin{array}{ll} 1, &{} \quad \mathrm {if} \quad y_i > 0, \\ 0, &{} \quad \mathrm {if} \quad y_i = 0, \\ -\,1, &{} \quad \mathrm {if} \quad y_i < 0. \end{array} \right. \end{aligned}$$

Then, \(\Vert \bar{x} \Vert _p = 1\) and we have

$$\begin{aligned} \Vert y \Vert _p^* = \sup \{ x^T y \, | \, \Vert x \Vert _p \le 1 \} \ge \bar{x}^T y = \max _i |y_i | = \Vert y \Vert _\infty , \end{aligned}$$

which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamanaka, S., Yamashita, N. Duality of nonconvex optimization with positively homogeneous functions. Comput Optim Appl 71, 435–456 (2018). https://doi.org/10.1007/s10589-018-0018-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0018-y

Keywords

Navigation