Skip to main content

Advertisement

Log in

Optimization of subsurface CO2 injection based on neural network surrogate modeling

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This study presents a workflow to optimize the location of CO2 injectors in order to maximize stored volume and prevent fault reactivation due to increases of pore pressure. We combine coupled reservoir flow and geomechanics simulations with neural network surrogate models and find the best injector location based on net present environmental value (NPEV). The surrogate models can complement the numerical reservoir simulations and efficiently optimize the well location and injection rate via the steepest ascent algorithm. We apply the workflow to the Brugge field, a closed synthetic reservoir that incorporates multiple faults, as an example. The surrogate model predicts a NPEV of approximately 0.19 billion carbon credits for the Brugge field, which is consistent with the corresponding reservoir simulation. NPEV will change under different safety factors that serve as an additional injection control to enhance the safety of injection. This proposed workflow could be readily applied to other similar reservoir models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachu, S.: CO2 storage in geological media: role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 34, 254–273 (2008). https://doi.org/10.1016/j.pecs.2007.10.001

    Article  Google Scholar 

  2. Benson, S.M., Cole, D.R.: CO2 sequestration in deep sedimentary formations. Elements. 4, 325–331 (2008). https://doi.org/10.2113/gselements.4.5.325

    Article  Google Scholar 

  3. Lake, L.W., 1989. Enhanced Oil Recovery

  4. Cappa, F., Rutqvist, J.: Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int. J. Greenh. Gas Control. 5, 336–346 (2011). https://doi.org/10.1016/j.ijggc.2010.08.005

    Article  Google Scholar 

  5. Faulkner, D.R., Sanchez-Roa, C., Boulton, C., den Hartog, S.A.M.: Pore fluid pressure development in compacting fault gouge in theory, experiments, and nature. J. Geophys. Res. Solid Earth. 123, 226–241 (2018). https://doi.org/10.1002/2017JB015130

    Article  Google Scholar 

  6. Ju, X., Fu, P., Settegast, R.R., Morris, J.P.: A coupled thermo-hydro-mechanical model for simulating leakoff-dominated hydraulic fracturing with application to geologic carbon storage. Int. J. Greenh. Gas Control. 109, 103379 (2021)

    Google Scholar 

  7. Rutqvist, J., Rinaldi, A.P., Cappa, F., Jeanne, P., Mazzoldi, A., Urpi, L., Guglielmi, Y., Vilarrasa, V.: Fault activation and induced seismicity in geological carbon storage – lessons learned from recent modeling studies. J. Rock Mech. Geotech. Eng. 8, 789–804 (2016). https://doi.org/10.1016/j.jrmge.2016.09.001

    Article  Google Scholar 

  8. Stork, A.L., Verdon, J.P., Kendall, J.-M.: The microseismic response at the in Salah carbon capture and storage (CCS) site. Int. J. Greenh. Gas Control. 32, 159–171 (2015). https://doi.org/10.1016/j.ijggc.2014.11.014

    Article  Google Scholar 

  9. Tang, H., Yan, B., Chai, Z., Zuo, L., Killough, J., Sun, Z.: Analyzing the well-interference phenomenon in the eagle ford shale/Austin chalk production system with a comprehensive compositional reservoir model. SPE Reserv. Eval. Eng. 22, 827–841 (2019b). https://doi.org/10.2118/191381-PA

    Article  Google Scholar 

  10. White, J.A., Foxall, W.: Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges. Int. J. Greenh Gas Control. 49, 413–424 (2016). https://doi.org/10.1016/j.ijggc.2016.03.021

    Article  Google Scholar 

  11. Zheng, X., Sun, Z., Espinoza, D.N., 2019. Uniaxial strain unloading compressibility of Frio sand: measurements and implications on reservoir pressure management for CO2 storage. 53rd U.S. rock Mech. Symp

  12. Rinaldi, A.P., Vilarrasa, V., Rutqvist, J., Cappa, F.: Fault reactivation during CO2 sequestration: effects of well orientation on seismicity and leakage. Greenh. Gases Sci. Technol. 5, 645–656 (2015)

    Google Scholar 

  13. Zoback, M.D., Gorelick, S.M.: Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc. Natl. Acad. Sci. 109, 10164–10168 (2012). https://doi.org/10.1073/pnas.1202473109

    Article  Google Scholar 

  14. Jeanne, P., Guglielmi, Y., Cappa, F., Rinaldi, A.P., Rutqvist, J.: The effects of lateral property variations on fault-zone reactivation by fluid pressurization: application to CO2 pressurization effects within major and undetected fault zones. J. Struct. Geol. 62, 97–108 (2014). https://doi.org/10.1016/j.jsg.2014.01.017

    Article  Google Scholar 

  15. Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.-F.: Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manag. 48, 1798–1807 (2007). https://doi.org/10.1016/j.enconman.2007.01.021

    Article  Google Scholar 

  16. Ryu, J., Espinoza, D.N., Balhoff, M.T., Tavassoli, S., 2019. Simulation of Fault Reactivation Using the HISS Model, in: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers

  17. Bruyelle, J., Guérillot, D., 2019. Well Placement Optimization with an Artificial Intelligence Method Applied to Brugge Field, in: SPE gas & oil Technology Showcase and Conference. OnePetro

  18. Güyagüler, B., Horne, R.N., Rogers, L., Rosenzweig, J.J.: Optimization of well placement in a Gulf of Mexico waterflooding project. SPE Reserv. Eval. Eng. 5, 229–236 (2002)

    Google Scholar 

  19. Cardoso, M.A., Durlofsky, L.J.: Linearized reduced-order models for subsurface flow simulation. J. Comput. Phys. 229, 681–700 (2010)

    Google Scholar 

  20. Pan, I., Babaei, M., Korre, A., Durucan, S.: Artificial neural network based surrogate modelling for multi-objective optimisation of geological CO2 storage operations. Energy Procedia. 63, 3483–3491 (2014)

    Google Scholar 

  21. Queipo, N.V., Goicochea, J.V., Pintos, S.: Surrogate modeling-based optimization of SAGD processes. J. Pet. Sci. Eng. 35, 83–93 (2002a)

    Google Scholar 

  22. Tang, H., Bailey, W.J., Stone, T., Killough, J., 2019a. A Unified Gas/Liquid Drift-Flux Model for all Wellbore Inclinations. SPE J

  23. Zerpa, L.E., Queipo, N.V., Pintos, S., Salager, J.-L.: An optimization methodology of alkaline–surfactant–polymer flooding processes using field scale numerical simulation and multiple surrogates. J. Pet. Sci. Eng. 47, 197–208 (2005)

    Google Scholar 

  24. Guo, Z., Reynolds, A.C., 2018. Robust Life-Cycle Production Optimization with a Support-Vector-Regression Proxy. SPE J

  25. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1, 61–70 (2011)

    Google Scholar 

  26. Mohaghegh, S.D., Modavi, C.A., Hafez, H.H., Haajizadeh, M., Kenawy, M.M., Guruswamy, S., 2006. Development of Surrogate Reservoir Models (SRM) for Fast Track Analysis of Complex Reservoirs, in: Intelligent Energy Conference and Exhibition. Society of Petroleum Engineers

  27. Al-Bulushi, N.I., King, P.R., Blunt, M.J., Kraaijveld, M.: Artificial neural networks workflow and its application in the petroleum industry. Neural Comput. Appl. 21, 409–421 (2012)

    Google Scholar 

  28. Amiri, M., Ghiasi-Freez, J., Golkar, B., Hatampour, A.: Improving water saturation estimation in a tight shaly sandstone reservoir using artificial neural network optimized by imperialist competitive algorithm–a case study. J. Pet. Sci. Eng. 127, 347–358 (2015)

    Google Scholar 

  29. Anifowose, F.A., Labadin, J., Abdulraheem, A.: Non-linear feature selection-based hybrid computational intelligence models for improved natural gas reservoir characterization. J. Nat. Gas Sci. Eng. 21, 397–410 (2014)

    Google Scholar 

  30. Zhang, D., Chen, Y., Meng, J.: Synthetic well logs generation via recurrent neural networks. Pet. Explor. Dev. 45, 629–639 (2018)

    Google Scholar 

  31. Lippmann, R.: An introduction to computing with neural nets. IEEE ASSP Mag. 4, 4–22 (1987). https://doi.org/10.1109/MASSP.1987.1165576

    Article  Google Scholar 

  32. Poulton, M.M.: Neural networks as an intelligence amplification tool: a review of applications. Geophysics. 67, 979–993 (2002)

    Google Scholar 

  33. White, A.C., Molnar, D., Aminian, K., Mohaghegh, S., Ameri, S., Esposito, P., 1995. The Application of ANN for Zone Identification in a Complex Reservoir, in: SPE Eastern Regional Meeting. Society of Petroleum Engineers

  34. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Netw. 8, 694–713 (1997)

    Google Scholar 

  35. Aminian, K., Ameri, S.: Application of artificial neural networks for reservoir characterization with limited data. J. Pet. Sci. Eng. 49, 212–222 (2005)

    Google Scholar 

  36. Ghaffarian, N., Eslamloueyan, R., Vaferi, B.: Model identification for gas condensate reservoirs by using ANN method based on well test data. J. Pet. Sci. Eng. 123, 20–29 (2014)

    Google Scholar 

  37. Salehi, M.M., Rahmati, M., Karimnezhad, M., Omidvar, P.: Estimation of the non records logs from existing logs using artificial neural networks. Egypt. J. Pet. 26, 957–968 (2017)

    Google Scholar 

  38. Tariq, Z., Elkatatny, S., Mahmoud, M., Ali, A.Z., Abdulraheem, A., 2017. A New Approach to Predict Failure Parameters of Carbonate Rocks Using Artificial Intelligence Tools, in: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Society of Petroleum Engineers

  39. Ashrafi, S.B., Anemangely, M., Sabah, M., Ameri, M.J.: Application of hybrid artificial neural networks for predicting rate of penetration (ROP): a case study from Marun oil field. J. Pet. Sci. Eng. 175, 604–623 (2019)

    Google Scholar 

  40. Ahmadi, M.A., Soleimani, R., Lee, M., Kashiwao, T., Bahadori, A.: Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool. Petroleum. 1, 118–132 (2015)

    Google Scholar 

  41. Dahaghi, A.K., Mohaghegh, S.D., 2011. Numerical Simulation and Multiple Realizations for Sensitivity Study of Shale Gas Reservoirs, in: SPE Production and Operations Symposium. Society of Petroleum Engineers

  42. Queipo, N.V., Pintos, S., Rincón, N., Contreras, N., Colmenares, J.: Surrogate modeling-based optimization for the integration of static and dynamic data into a reservoir description. J. Pet. Sci. Eng. 35, 167–181 (2002b)

    Google Scholar 

  43. Chen, Y., Oliver, D.S.: Ensemble-based closed-loop optimization applied to Brugge field. SPE Reserv. Eval. Eng. 13, 56–71 (2010)

    Google Scholar 

  44. Dehdari, V., Oliver, D.S.: Sequential quadratic programming for solving constrained production optimization--case study from Brugge field. SPE J. 17, 874–884 (2012)

    Google Scholar 

  45. Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R.J., Chen, Y., Dunlop, N., Vossepoel, F.C., Xu, R., Sarma, P., Alhuthali, A.H.H., Reynolds, A.: Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13, 391–405 (2010). https://doi.org/10.2118/119094-PA

    Article  Google Scholar 

  46. Minkoff, S.E., Stone, C.M., Bryant, S., Peszynska, M., Wheeler, M.F.: Coupled fluid flow and geomechanical deformation modeling. J. Pet. Sci. Eng. 38, 37–56 (2003)

    Google Scholar 

  47. CMG: GEM user’s Guide. Comput. Model. Gr. Ltd., Calgary, Alberta (2018)

    Google Scholar 

  48. Kim, J., Tchelepi, H.A., Juanes, R., 2009. Stability, Accuracy and Efficiency of Sequential Methods for Coupled Flow and Geomechanics. SPE Reserv. Simul. Symp. https://doi.org/10.2118/119084-MS

  49. Singh, G., Wheeler, M.F.: Compositional flow modeling using a multi-point flux mixed finite element method. Comput. Geosci. 20, 421–435 (2016). https://doi.org/10.1007/s10596-015-9535-2

    Article  Google Scholar 

  50. Rachford, H.H., Rice, J.D.: Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon equilibrium. J. Pet. Technol. 4, 13–19 (1952). https://doi.org/10.2118/952327-G

    Article  Google Scholar 

  51. Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Google Scholar 

  52. Delshad, M., Kong, X., Wheeler, M.F., 2011. On Interplay of Capillary, Gravity, and Viscous Forces on Brine/CO2 Relative Permeability in a Compositional and Parallel Simulation Framework, in: SPE Reservoir Simulation Symposium. OnePetro

  53. Gupta, A.K., Bryant, S.L., 2010. Analytical Models to Select an Effective Saline Reservoir for CO2 Storage, in: SPE Annual Technical Conference and Exhibition. OnePetro

  54. Jung, H., Singh, G., Espinoza, D.N., Wheeler, M.F.: Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator. Adv. Water Resour. 112, 160–169 (2018). https://doi.org/10.1016/j.advwatres.2017.12.003

    Article  Google Scholar 

  55. Kumar, A., 2004. A Simulation Study of Carbon Sequestration in Deep Saline Aquifers

  56. Li, B., Tchelepi, H.A., Benson, S.M.: Influence of capillary-pressure models on CO2 solubility trapping. Adv. Water Resour. 62, 488–498 (2013)

    Google Scholar 

  57. Garcıa, J.E., 2001. Density of Aqueous Solutions of CO2. Lawrence Berkeley Natl. Lab

  58. Pedersen, K.S., Fredenslund, A., Christensen, P.L., Thomassen, P.: Viscosity of crude oils. Chem. Eng. Sci. 39, 1011–1016 (1984)

    Google Scholar 

  59. Scharlin, P., Cargill, R.W.: Carbon Dioxide in Water and Aqueous Electrolyte Solutions. Oxford University Press (1996)

    Google Scholar 

  60. Zaytsev, I.D., Aseyev, G.G.: Properties of Aqueous Solutions of Electrolytes. CRC press (1992)

    Google Scholar 

  61. Tran, D., Shrivastava, V.K., Nghiem, L.X., Kohse, B.F., 2009. Geomechanical risk mitigation for CO2 sequestration in saline aquifers. SPE Annu. Tech. Conf. Exhib. https://doi.org/10.2118/125167-MS

  62. Bense, V.F., Person, M.A.: Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour. Res. 42, (2006)

  63. Caine, J.S., Evans, J.P., Forster, C.B.: Fault zone architecture and permeability structure. Geology. 24, 1025–1028 (1996). https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

    Article  Google Scholar 

  64. Lee, S.-Y., Carle, S.F., Fogg, G.E.: Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Adv. Water Resour. 30, 1914–1932 (2007)

    Google Scholar 

  65. Horowitz, J., Cronin, J.-A., Hawkins, H., Konda, L., Yuskavage, A., 2017. Methodology for Analyzing a Carbon Tax. US Dep. Treasury, Washington, DC

  66. Otake, M.: Evaluation of CO2 underground behavior from injector’s time-lapse pressure fall off analysis: a case study of CO2 aquifer storage project. Energy Procedia. 37, 3307–3318 (2013)

    Google Scholar 

  67. Liebscher, A., Möller, F., Bannach, A., Köhler, S., Wiebach, J., Schmidt-Hattenberger, C., Weiner, M., Pretschner, C., Ebert, K., Zemke, J.: Injection operation and operational pressure–temperature monitoring at the CO2 storage pilot site Ketzin, Germany—design, results, recommendations. Int. J. Greenh Gas Control. 15, 163–173 (2013)

    Google Scholar 

  68. Trupp, M., Frontczak, J., Torkington, J.: The gorgon CO2 injection project–2012 update. Energy Procedia. 37, 6237–6247 (2013)

    Google Scholar 

  69. White, J.A., Chiaramonte, L., Ezzedine, S., Foxall, W., Hao, Y., Ramirez, A., McNab, W.: Geomechanical behavior of the reservoir and caprock system at the in Salah CO2 storage project. Proc. Natl. Acad. Sci. 111, 8747–8752 (2014)

    Google Scholar 

  70. Hansen, O., Gilding, D., Nazarian, B., Osdal, B., Ringrose, P., Kristoffersen, J.-B., Eiken, O., Hansen, H.: Snøhvit: the history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm. Energy Procedia. 37, 3565–3573 (2013)

    Google Scholar 

  71. Verdon, J.P., Kendall, J.-M., Stork, A.L., Chadwick, R.A., White, D.J., Bissell, R.C.: Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and in Salah. Proc. Natl. Acad. Sci. 110, E2762–E2771 (2013)

    Google Scholar 

  72. Tawiah, P., Duer, J., Bryant, S.L., Larter, S., O’Brien, S., Dong, M.: CO2 injectivity behaviour under non-isothermal conditions–field observations and assessments from the quest CCS operation. Int. J. Greenh. Gas Control. 92, 102843 (2020)

    Google Scholar 

  73. Finley, R.J., Frailey, S.M., Leetaru, H.E., Senel, O., Couëslan, M.L., Scott, M.: Early operational experience at a one-million tonne CCS demonstration project, Decatur, Illinois, USA. Energy Procedia. 37, 6149–6155 (2013)

    Google Scholar 

  74. Fausett, L., 1994. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall, Inc.

  75. Rolon, L., Mohaghegh, S.D., Ameri, S., Gaskari, R., McDaniel, B.: Using artificial neural networks to generate synthetic well logs. J. Nat. Gas Sci. Eng. 1, 118–133 (2009)

    Google Scholar 

  76. Zendehboudi, S., Rezaei, N., Lohi, A.: Applications of hybrid models in chemical, petroleum, and energy systems: a systematic review. Appl. Energy. 228, 2539–2566 (2018)

    Google Scholar 

  77. Ceryan, N., Can, N.K., 2018. Prediction of The Uniaxial Compressive Strength of Rocks Materials, in: Handbook of Research on Trends and Digital Advances in Engineering Geology. IGI Global, pp. 31–96

  78. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32, 2627–2636 (1998)

    Google Scholar 

  79. Adedigba, S.A., Khan, F., Yang, M.: Dynamic failure analysis of process systems using neural networks. Process. Saf. Environ. Prot. 111, 529–543 (2017)

    Google Scholar 

  80. Sapna, S., Tamilarasi, A., Kumar, M.P.: Backpropagation learning algorithm based on Levenberg Marquardt algorithm. Comp Sci Inf. Technol (CS IT). 2, 393–398 (2012)

    Google Scholar 

  81. Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural network toolbox. User’s Guid. MathWorks. 2, 77–81 (2010)

    Google Scholar 

  82. Ding, S., Jiang, H., Li, J., Tang, G.: Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method. Comput. Geosci. 18, 747–762 (2014)

    Google Scholar 

  83. Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco, M.A.C., Vellasco, M.M.B.R., 2009. Well Placement Optimization Using a Genetic Algorithm with Nonlinear Constraints, in: SPE Reservoir Simulation Symposium. OnePetro

  84. Montes, G., Bartolome, P., Udias, A.L., 2001. The Use of Genetic Algorithms in Well Placement Optimization, in: SPE Latin American and Caribbean Petroleum Engineering Conference. OnePetro

Download references

Acknowledgements

This work was supported by ExxonMobil through its membership in The University of Texas at Austin Energy Institute. The authors are thankful to the ExxonMobil team for providing meaningful comments and generating the discussions that helped guide this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Xu, J., Espinoza, D.N. et al. Optimization of subsurface CO2 injection based on neural network surrogate modeling. Comput Geosci 25, 1887–1898 (2021). https://doi.org/10.1007/s10596-021-10092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10092-9

Keywords

Navigation