Skip to main content
Log in

Myroides pelagicus from the Gut of Drosophila melanogaster Attenuates Inflammation on Dextran Sodium Sulfate-Induced Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim

Probiotics are live microorganisms that confer a health benefit on the host when administered in adequate amounts. In the present study, the putative probiotic strain was identified from the gut of Drosophila melanogaster and assessed for its protective effect in inflammatory bowel disease.

Methods

Active probiotics were screened from the Drosophila melanogaster gut by the selection criteria of gastric juice tolerance, hydrophobic property, antimicrobial potential, adhesion, and invasion properties. The active probiotics were identified by 16s rDNA sequencing and the effect of these active probiotics was evaluated in a Dextran sulphate sodium (DSS)-induced mice model by estimating inflammatory markers and histopathological changes.

Results

Nine Gram-positive and bile salt tolerant bacterial isolates were obtained from the gut samples. The isolates PTH 2, PTH 4, and PTH 7 clearly showed significant activity in antimicrobial potential, hydrophobic (>74 %) property, and intestinal juice tolerance. Among these, PTH 7 was selected for further studies due to its significant low-invasion ability and it proved capable of reducing the secretion of proinflammatory cytokines. The 16s rDNA studies revealed that PTH 7 was Myroides pelagicus. Administration of M. pelagicus to the DSS-induced colitic animals significantly suppressed myeloperoxidase, ALP, and malondialdehyde levels, and also lowered levels of proinflammatory cytokine expression. Further, the recovery from the disease by the probiotic treatment was supported by histopathological and macroscopic observation. The treated animals did not show any adverse signs in their physiology or behavior.

Conclusion

Myroides pelagicus successfully prohibited inflammatory markers and acted as a potent probiotic. Future studies with this stain might prove its efficacy as a drug for the management of colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Geier MS, Butler RN, Giffard PM, et al. Prebiotic and synbiotic fructo oligosaccharide administration fails to reduce the severity of experimental colitis in rats. Dis Colon Rectum. 2007;50:1061–1069.

    Article  PubMed  Google Scholar 

  2. Corfield AP, Myerscough N, Longman R, et al. Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut. 2000;47:589–594.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621.

    Article  CAS  PubMed  Google Scholar 

  4. Pavlick KP, Laroux FS, Fuseler J, et al. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med. 2002;33:311–322.

    Article  CAS  PubMed  Google Scholar 

  5. Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci. 2007;52:2015–2021.

    Article  PubMed  Google Scholar 

  6. MacDonald TT, Bajaj-Elliott M, Pender SL. T cells orchestrate intestinal mucosal shape and integrity. Immunol Today. 1999;20:505–510.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Brune A. Characterisation and partial purification of proteinases from the highly alkaline midgut of the humivorous larvae of Pachnoda ephippiata (Coleoptera: Scaravbaeidae). Soil Biol Biochem. 2004;36:435–442.

    Article  CAS  Google Scholar 

  8. Dillon RJ, Dillon VM. The gut bacteria of insects: non-pathogenic interactions. Annu Rev Entomol. 2004;49:71–92.

    Article  CAS  PubMed  Google Scholar 

  9. Mateos M, Castrezana SJ, Nankivell BJ, et al. Heritable endosymbionts of drosophila. Genet Soc Am. 2006;174:363–376.

    CAS  Google Scholar 

  10. Priyanka M, Chandrasekhar C, Soumendranath C. Phenotyping and molecular characterization of Lysinibacillus sp. P-011 (GU288531) and their role in the development of Drosophila melanogaster. Afr J Biotechnol. 2012;11(93):15967–15974.

    Google Scholar 

  11. Douglas AE. Host benefit and the evolution of specialization in symbiosis. Heredity. 1998;81:599–603.

    Article  Google Scholar 

  12. Hedges LM, Brownlie JC, O’Neill SL, et al. Wolbachia and virus protection in insects. Science. 2008;322:702.

    Article  CAS  PubMed  Google Scholar 

  13. Osborne SE, Leong YS, O’Neill SL, et al. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog. 2009;5(11):e1000656.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 2008;6(12):e1000002.

    Article  PubMed Central  Google Scholar 

  15. Serbus LR, Casper Lindley C, Landmann F et al. The genetics and cell biology of Wolbachia host interactions. Annu Rev Genet. 2008; 42:683–707.

    Google Scholar 

  16. Brummel T, Ching A, Seroude L, et al. Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci USA. 2004;101:12974–12979.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ha EM, Lee KA, Park SH, et al. Regulation of DUOX by the Gaq-phospholipase Cb-Ca2 + pathway in Drosophila gut immunity. Dev Cell. 2009;16:386–397.

    Article  CAS  PubMed  Google Scholar 

  18. Ha EM, Lee KA, Seo YY, et al. Co-ordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nat Immunol. 2009;10:949–957.

    Article  CAS  PubMed  Google Scholar 

  19. Ryu JH, Kim SH, Lee HY, et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science. 2008;319:777–782.

    Article  CAS  PubMed  Google Scholar 

  20. FAO/WHO: Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food Nutr. Pap. 2006; 85:1–50.

    Google Scholar 

  21. Geoffroy M-C, Guyard C, Quatannens B, et al. Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl Environ Microbiol. 2000;66:383–391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Anton Van Lee. 2002;82:279–289.

    Article  CAS  Google Scholar 

  23. Zarate G, Chaia AP, Gonzalez S et al. Viability and beta-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J. Food. Prot. 2000; 63:1214e21.

    Google Scholar 

  24. Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol. Lett. 1980; 9:29–33.

    Google Scholar 

  25. Bobin-Dubigeon C, Collin X, Grimaud N, et al. Effects of tumor necrosis factor-synthesis inhibitors on rat trinitrobenzene sul-phonic acid-induced chronic colitis. Eur J Pharmacol. 2001;421:103–110.

    Article  Google Scholar 

  26. Grimoud J, Durand H, de Souza S, et al. In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects. Int J Food Microbiol. 2010;144:42–50.

    Article  CAS  PubMed  Google Scholar 

  27. Nostro A, Canatelli MA. Modification of hydrophobicity in vitro adherence and cellular aggregation. Lett Appl Microbiol. 2004;38:423–427.

    Article  CAS  PubMed  Google Scholar 

  28. Neurath MF, Fuss I, Kelsall BL, et al. W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995;182:1281–1290.

    Article  CAS  PubMed  Google Scholar 

  29. Grisham MB, Beniot JN, Granger DN. Assessment of leukocyte involvement during ischemia and reperfusion of intestine. Methods Enzymol. 1990;186:729–742.

    Article  CAS  PubMed  Google Scholar 

  30. Cetinkaya A, Bulbuloglu E, Kantarceken B, et al. Effects of L-carnitine on oxidant/antioxidant status in acetic acid-induced colitis. Dig Dis Sci. 2006;51:488–494.

    Article  CAS  PubMed  Google Scholar 

  31. Lowry OH, Rosenbrough NJ, Farr AL, et al. Protein measurement with the Folin Phenol Reagent. J Biol Chem. 1951;193:265–275.

    CAS  PubMed  Google Scholar 

  32. Blandizzi C, Natale G, Gherardi G, et al. Acid-independent gastroprotective effects of lansoprazole in experimental mucosal injury. Dig Dis Sci. 1999;44:2039–2050.

    Article  CAS  PubMed  Google Scholar 

  33. Dionne MS, Pham LN, Shirasu-Hiza M, et al. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr Biol. 2006;16:1977–1985.

    Article  CAS  PubMed  Google Scholar 

  34. Matova N, Anderson KV. Rel/NF-kappaB double mutants reveal that cellular immunity is central to Drosophila host defense. Proc Natl Acad Sci USA. 2006;103:16424–16429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920.

    Article  PubMed  Google Scholar 

  36. Dethlefsen L, Eckburg PB, Bik EM, et al. Assembly of the human intestinal microbiota. Trends Ecol Evol. 2006;21:517–523.

    Article  PubMed  Google Scholar 

  37. Holt PR. Gastrointestinal diseases in the elderly. Curr Opin Clin Nutr Metab Care. 2003;6:41–48.

    Article  PubMed  Google Scholar 

  38. Hopkins MJ, Sharp R, Macfarlane GT. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut. 2001;48:198–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Collins JK, Thornton G, Sullivan GO. Selection of probiotic strains for human applications. Int Dairy J. 1998;8:487–490.

    Article  Google Scholar 

  40. Jian Z, Xue Z, Li Z, et al. Potential probiotic characterization of Lactobacillus plantarum strains isolated from Inner Mongolia “Hurood” cheese. J Microbiol Biotechnol. 2013;. doi:10.4014/jmb.1308.08075.

    Google Scholar 

  41. Succi M, Tremonte P, Reale A, et al. Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. 2005;244:129–137.

    Article  CAS  Google Scholar 

  42. Prasad J, Gill H, Smart J, et al. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J. 1998;8:993–1002.

    Article  Google Scholar 

  43. Ram C, Chander H. Optimization of culture conditions of probiotic bifidobacteria for maximal adhesion to hexadecane. World J Microb Biot. 2003;19:407–410.

    Article  CAS  Google Scholar 

  44. Naidu AS, Bidlack WR, Clemens RA. Probiotic spectra of lactic acid bacteria (LB). Cri Rev Food Sci Nutr. 1999;38:13–126.

    Article  Google Scholar 

  45. Kiely LJ, Olson NF. The physicochemical surface characteristics of Lactobacillus casei. Food Microbiol. 2000;17:277–291.

    Article  CAS  Google Scholar 

  46. Mayra-Makinen A, Manninen M, Gyllenberg H. The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves. J Appl Bacteriol. 1983;55:241–245.

    Article  CAS  PubMed  Google Scholar 

  47. Saavedra JM, Bauman NA, oung L et al. Feeding of Bifidobacterium and Streptococcus thermophilus to infants in hospital to prevent diarrhea and shedding of rotavirus. Lancet 1994; 344:1046–1049.

  48. Kravtsov EG, Yermolayev AV, Anokhina IV, et al. Adhesion characteristics of Lactobacillus is a criterion of the probiotic choice. Bull Exp Biol Med. 2008;145:232–234.

    Article  CAS  PubMed  Google Scholar 

  49. Dunne C, O’Mahony L, Murphy L, et al. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr. 2001;73:386S–392S.

    CAS  PubMed  Google Scholar 

  50. Simone RCC, Ma-Carina C, Vincent F, et al. In vitro study on the antimicrobial activity of probiotic milk against common pediatric community acquired respiratory pathogens. PIDSP J. 2005;9:25–29.

    Google Scholar 

  51. Liu MQB, Zhou SY, Han FH, et al. Effects of Tanguticum maxim polysaccharide on ulcerative colitis induced by TNBS in rats. Zhongguo ZhongYao ZaZhi. 2003;28:246–249.

    PubMed  Google Scholar 

  52. Deniz M, Cetinel S, Kurtel H. Blood flow alterations in TNBS-induced colitis: role of endothelin receptors. Inflamm Res. 2004;53:329–336.

    Article  CAS  PubMed  Google Scholar 

  53. Irianto A, Austin B. Probiotics in aquaculture. J Fish Dis. 2002;25:633–642.

    Article  Google Scholar 

  54. Torres MI, Garci′A-Martin M, Fernandez MI et al. Experimental colitis induced by trinitrobenzenesulphonic acid. An ultrastructural and histochemical study. Dig Dis Sci. 1999; 44:2523–2529.

    Google Scholar 

  55. Einerhand AW, Renes IB, Makkink MK, et al. Role of mucins in inflammatory bowel disease: important lessons from experimental models. Eur J Gastroenterol Hepatol. 2002;14:757–765.

    Article  CAS  PubMed  Google Scholar 

  56. Xu L, Yang ZL, Li P, et al. Modulating effect of hesperidin on experimental murine colitis induced by dextran sulfate sodium. Phytomedicine. 2009;16:989–995.

    Article  CAS  PubMed  Google Scholar 

  57. Sartor RB. Cytokines in intestinal inflammation: pathophysiological and clinical consideration. Gestroenterology. 1994;106:533–539.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Entomology Research Institute, Chennai, India, for financial assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ignacimuthu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hairul Islam, V.I., Saravanan, S., Preetam Raj, J.P. et al. Myroides pelagicus from the Gut of Drosophila melanogaster Attenuates Inflammation on Dextran Sodium Sulfate-Induced Colitis. Dig Dis Sci 59, 1121–1133 (2014). https://doi.org/10.1007/s10620-013-3010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-3010-5

Keywords

Navigation