Skip to main content

Advertisement

Log in

Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

While there are numerous medical comorbidities associated with ASD, gastrointestinal (GI) issues have a significant impact on quality of life for these individuals. Recent findings continue to support the relationship between the gut microbiome and both GI symptoms and behavior, but the heterogeneity within the autism spectrum requires in-depth clinical characterization of these clinical cohorts. Large, diverse, well-controlled studies in this area of research are still needed. Although there is still much to discover about the brain-gut-microbiome axis in ASD, microbially mediated therapies, specifically probiotics and fecal microbiota transplantation have shown promise in the treatment of GI symptoms in ASD, with potential benefit to the core behavioral symptoms of ASD as well. Future research and clinical trials must increasingly consider complex phenotypes in ASD in stratification of large datasets as well as in design of inclusion criteria for individual therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baio J, Wiggins L, Christensen DL, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67:1–23.

    PubMed  PubMed Central  Google Scholar 

  2. McElhanon BO, McCracken C, Karpen S, et al. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014;133:872–883.

    PubMed  Google Scholar 

  3. Doshi-Velez F, Ge Y, Kohane I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics. 2014;133:e54–e63.

    PubMed  PubMed Central  Google Scholar 

  4. Marler S, Ferguson BJ, Lee EB, et al. Association of rigid-compulsive behavior with functional constipation in autism spectrum disorder. J Autism Dev Disord. 2017;47:1673–1681.

    PubMed  PubMed Central  Google Scholar 

  5. Bradley CC, Boan AD, Cohen AP, et al. Reported history of developmental regression and restricted, repetitive behaviors in children with autism spectrum disorders. J Dev Behav Pediatr. 2016;37:451–456.

    PubMed  Google Scholar 

  6. Maenner MJ, Arneson CL, Levy SE, et al. Brief report: association between behavioral features and gastrointestinal problems among children with autism spectrum disorder. J Autism Dev Disord. 2012;42:1520–1525.

    PubMed  Google Scholar 

  7. Horvath K, Perman JA. Autism and gastrointestinal symptoms. Curr Gastroenterol Rep. 2002;4:251–258.

    PubMed  Google Scholar 

  8. Nikolov RN, Bearss KE, Lettinga J, et al. Gastrointestinal symptoms in a sample of children with pervasive developmental disorders. J Autism Dev Disord. 2009;39:405–413.

    PubMed  Google Scholar 

  9. Mazurek MO, Vasa RA, Kalb LG, et al. Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J Abnorm Child Psychol. 2013;41:165–176.

    PubMed  Google Scholar 

  10. Gorrindo P, Williams KC, Lee EB, et al. Gastrointestinal dysfunction in autism: parental report, clinical evaluation, and associated factors. Autism Res. 2012;5:101–108.

    PubMed  PubMed Central  Google Scholar 

  11. Fulceri F, Morelli M, Santocchi E, et al. Gastrointestinal symptoms and behavioral problems in preschoolers with autism spectrum disorder. Dig Liver Dis. 2016;48:248–254.

    PubMed  Google Scholar 

  12. Chaidez V, Hansen RL, Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J Autism Dev Disord. 2014;44:1117–1127.

    PubMed  PubMed Central  Google Scholar 

  13. Mazefsky CA, Schreiber DR, Olino TM, et al. The association between emotional and behavioral problems and gastrointestinal symptoms among children with high-functioning autism. Autism. 2014;18:493–501.

    PubMed  Google Scholar 

  14. Ferguson BJ, Dovgan K, Takahashi N, et al. The relationship among gastrointestinal symptoms, problem behaviors, and internalizing symptoms in children and adolescents with autism spectrum disorder. Front Psychiatry. 2019;10:194.

    PubMed  PubMed Central  Google Scholar 

  15. Mouridsen SE, Rich B, Isager T. Epilepsy in disintegrative psychosis and infantile autism: a long-term validation study. Dev Med Child Neurol. 1999;41:110–114.

    CAS  PubMed  Google Scholar 

  16. Tuchman R, Rapin I. Epilepsy in autism. Lancet Neurol. 2002;1:352–358.

    PubMed  Google Scholar 

  17. Richdale AL, Schreck KA. Sleep problems in autism spectrum disorders: prevalence, nature, and possible biopsychosocial aetiologies. Sleep Med Rev. 2009;13:403–411.

    PubMed  Google Scholar 

  18. Hollister EB, Oezguen N, Chumpitazi BP, et al. Leveraging human microbiome features to diagnose and stratify children with irritable bowel syndrome. J Mol Diagn. 2019;21:449–461.

    PubMed  PubMed Central  Google Scholar 

  19. Vich Vila A, Imhann F, Collij V, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med. 2018;10:eaap8914.

    PubMed  Google Scholar 

  20. Shankar V, Reo NV, Paliy O. Simultaneous fecal microbial and metabolite profiling enables accurate classification of pediatric irritable bowel syndrome. Microbiome. 2015;3:73.

    PubMed  PubMed Central  Google Scholar 

  21. Nafarin AR, Hegar B, Sjakti HA, et al. Gut microbiome pattern in adolescents with functional gastrointestinal disease. Int J Pediatr Adolesc Med. 2019;6:12–15.

    PubMed  PubMed Central  Google Scholar 

  22. Saulnier DM, Riehle K, Mistretta TA, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141:1782–1791.

    CAS  PubMed  Google Scholar 

  23. Lo Presti A, Zorzi F, Del Chierico F, et al. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front Microbiol. 2019;10:1655.

    PubMed  PubMed Central  Google Scholar 

  24. Sandler RH, Finegold SM, Bolte ER, et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol. 2000;15:429–435.

    CAS  PubMed  Google Scholar 

  25. Wimberley T, Agerbo E, Pedersen CB, et al. Otitis media, antibiotics, and risk of autism spectrum disorder. Autism Res. 2018;11:1432–1440.

    PubMed  Google Scholar 

  26. Bolte ER. Autism and Clostridium tetani. Med Hypotheses. 1998;51:133–144.

    CAS  PubMed  Google Scholar 

  27. Finegold SM, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis. 2002;35:S6–s16.

    PubMed  Google Scholar 

  28. Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol. 1994;13:1–8.

    CAS  PubMed  Google Scholar 

  29. Rodakis J. An n = 1 case report of a child with autism improving on antibiotics and a father’s quest to understand what it may mean. Microb Ecol Health Dis. 2015;26:26382.

    PubMed  Google Scholar 

  30. Van Bambeke F, Van Laethem Y, Courvalin P, et al. Glycopeptide antibiotics. Drugs. 2004;64:913–936.

    PubMed  Google Scholar 

  31. Sandler AD, Sutton KA, DeWeese J, et al. Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. N Engl J Med. 1999;341:1801–1806.

    CAS  PubMed  Google Scholar 

  32. Lasagna L, Mosteller F, Von Felsinger JM, et al. A study of the placebo response. Am J Med. 1954;16:770–779.

    CAS  PubMed  Google Scholar 

  33. De Angelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE. 2013;8:e76993.

    PubMed  PubMed Central  Google Scholar 

  34. Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–453.

    CAS  PubMed  Google Scholar 

  35. Finegold SM, Summanen PH, Downes J, et al. Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe. 2017;45:133–137.

    CAS  PubMed  Google Scholar 

  36. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70:6459–6465.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gondalia SV, Palombo EA, Knowles SR, et al. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 2012;5:419–427.

    PubMed  Google Scholar 

  38. Kang DW, Park JG, Ilhan ZE, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE. 2013;8:e68322.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Parracho HM, Bingham MO, Gibson GR, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54:987–991.

    PubMed  Google Scholar 

  40. Son JS, Zheng LJ, Rowehl LM, et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection. PLoS ONE. 2015;10:e0137725.

    PubMed  PubMed Central  Google Scholar 

  41. Wang L, Christophersen CT, Sorich MJ, et al. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism. 2013;4:42.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Altieri L, Neri C, Sacco R, et al. Urinary p-cresol is elevated in small children with severe autism spectrum disorder. Biomarkers. 2011;16:252–260.

    CAS  PubMed  Google Scholar 

  43. Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol. 2013;36:82–90.

    CAS  PubMed  Google Scholar 

  44. Williams BL, Hornig M, Buie T, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE. 2011;6:e24585.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding HT, Taur Y, Walkup JT. Gut microbiota and autism: key concepts and findings. J Autism Dev Disord. 2017;47:480–489.

    PubMed  Google Scholar 

  46. Backhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703.

    PubMed  Google Scholar 

  47. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108:4578–4585.

    CAS  PubMed  Google Scholar 

  48. Yassour M, Vatanen T, Siljander H, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016;8:343ra81.

    PubMed  PubMed Central  Google Scholar 

  49. Berding K, Donovan SM. Diet can impact microbiota composition in children with autism spectrum disorder. Front Neurosci. 2018;12:515.

    PubMed  PubMed Central  Google Scholar 

  50. Anitha M, Vijay-Kumar M, Sitaraman SV, et al. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology. 2012;143:e4.

    Google Scholar 

  51. Buie T, Campbell DB, Fuchs GJ 3rd, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010;125:S1–S18.

    PubMed  Google Scholar 

  52. Christensen DL, Maenner MJ, Bilder D, et al. Prevalence and characteristics of autism spectrum disorder among children aged 4 years—early autism and developmental disabilities monitoring network, seven sites, United States, 2010, 2012, and 2014. MMWR Surveill Summ. 2019;68:1–19.

    PubMed  PubMed Central  Google Scholar 

  53. Coretti L, Paparo L, Riccio MP, et al. Gut microbiota features in young children with autism spectrum disorders. Front Microbiol. 2018;9:3146.

    PubMed  PubMed Central  Google Scholar 

  54. Strati F, Cavalieri D, Albanese D, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:24.

    PubMed  PubMed Central  Google Scholar 

  55. Pulikkan J, Maji A, Dhakan DB, et al. Gut microbial dysbiosis in indian children with autism spectrum disorders. Microb Ecol. 2018;76:1102–1114.

    CAS  PubMed  Google Scholar 

  56. Plaza-Diaz J, Gomez-Fernandez A, Chueca N, et al. Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients. 2019;11:337.

    CAS  PubMed Central  Google Scholar 

  57. Ma B, Liang J, Dai M, et al. Altered gut microbiota in chinese children with autism spectrum disorders. Front Cell Infect Microbiol. 2019;9:40.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zurita MF, Cardenas PA, Sandoval ME, et al. Analysis of gut microbiome, nutrition and immune status in autism spectrum disorder: a case-control study in Ecuador. Gut Microbes. 2019. https://doi.org/10.1080/19490976.2019.1662260.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang W, Chen L, Zhou R, et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol. 2014;52:398–406.

    PubMed  PubMed Central  Google Scholar 

  60. Li G, Yang M, Zhou K, et al. Diversity of duodenal and rectal microbiota in biopsy tissues and luminal contents in healthy volunteers. J Microbiol Biotechnol. 2015;25:1136–1145.

    CAS  PubMed  Google Scholar 

  61. Reigstad CS, Salmonson CE, Rainey JF 3rd, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29:1395–1403.

    CAS  PubMed  Google Scholar 

  62. Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163:367–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohnmacht C, Park JH, Cording S, et al. Mucosal immunology. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science. 2015;349:989–993.

    CAS  PubMed  Google Scholar 

  65. Luna RA, Oezguen N, Balderas M, et al. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell Mol Gastroenterol Hepatol. 2017;3:218–230.

    PubMed  Google Scholar 

  66. Knivsberg AM, Reichelt KL, Hoien T, et al. A randomised, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci. 2002;5:251–261.

    CAS  PubMed  Google Scholar 

  67. Margolis KG, Buie TM, Turner JB, et al. Development of a brief parent-report screen for common gastrointestinal disorders in autism spectrum disorder. J Autism Dev Disord. 2019;49:349–362.

    PubMed  PubMed Central  Google Scholar 

  68. Marler S, Ferguson BJ, Lee EB, et al. Brief report: whole blood serotonin levels and gastrointestinal symptoms in autism spectrum disorder. J Autism Dev Disord. 2016;46:1124–1130.

    PubMed  PubMed Central  Google Scholar 

  69. Fung TC, Vuong HE, Luna CDG, et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat Microbiol. 2019;4:2064–2073.

    PubMed  PubMed Central  Google Scholar 

  70. Golubeva AV, Joyce SA, Moloney G, et al. Microbiota-related changes in bile acid and tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine. 2017;24:166–178.

    PubMed  PubMed Central  Google Scholar 

  71. Margolis KG, Li Z, Stevanovic K, et al. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J Clin Invest. 2016;126:2221–2235.

    PubMed  PubMed Central  Google Scholar 

  72. Bruce-Keller AJ, Fernandez-Kim SO, Townsend RL, et al. Maternal obese-type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice. PLoS ONE. 2017;12:e0175577.

    PubMed  PubMed Central  Google Scholar 

  73. Sgritta M, Dooling SW, Buffington SA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101:e6.

    Google Scholar 

  74. Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron. 2013;78:8–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hsiao EY, McBride SW, Chow J, et al. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci USA. 2012;109:12776–12781.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi GB, Yim YS, Wong H, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–939.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahn Y, Narous M, Tobias R, et al. The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev Neurosci. 2014;36:371–380.

    CAS  PubMed  Google Scholar 

  78. Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–217.

    CAS  PubMed  Google Scholar 

  79. Sharon G, Sampson TR, Geschwind DH, et al. The central nervous system and the gut microbiome. Cell. 2016;167:915–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Desbonnet L, Clarke G, Shanahan F, et al. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19:146–148.

    CAS  PubMed  Google Scholar 

  81. Olson CA, Vuong HE, Yano JM, et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;174:497.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Buffington SA, Di Prisco GV, Auchtung TA, et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165:1762–1775.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bhattarai Y, Schmidt BA, Linden DR, et al. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production. Am J Physiol Gastrointest Liver Physiol. 2017;313:G80–g87.

    PubMed  PubMed Central  Google Scholar 

  84. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–1463.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81:411–423.

    PubMed  Google Scholar 

  86. Ogbonnaya ES, Clarke G, Shanahan F, et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry. 2015;78:e7–e9.

    PubMed  Google Scholar 

  87. Shin A, Preidis GA, Shulman R, et al. The gut microbiome in adult and pediatric functional gastrointestinal disorders. Clin Gastroenterol Hepatol. 2019;17:256–274.

    CAS  PubMed  Google Scholar 

  88. Prado C, Michels M, Avila P, et al. The protective effects of fecal microbiota transplantation in an experimental model of necrotizing enterocolitis. J Pediatr Surg. 2019;54:1578–1583.

    PubMed  Google Scholar 

  89. Kabouridis PS, Lasrado R, McCallum S, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85:289–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Foley KF, Pantano C, Ciolino A, et al. IFN-gamma and TNF-alpha decrease serotonin transporter function and expression in Caco2 cells. Am J Physiol Gastrointest Liver Physiol. 2007;292:G779–G784.

    CAS  PubMed  Google Scholar 

  91. Foley S, Garsed K, Singh G, et al. Impaired uptake of serotonin by platelets from patients with irritable bowel syndrome correlates with duodenal immune activation. Gastroenterology. 2011;140:e1.

    Google Scholar 

  92. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450.

    CAS  PubMed  Google Scholar 

  93. Collins J, Borojevic R, Verdu EF, et al. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil. 2014;26:98–107.

    CAS  PubMed  Google Scholar 

  94. Hales CM, Carroll MD, Fryar CD, et al. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief 2017:1–8.

  95. Fryar CD, Kruszon-Moran D, Gu Q, et al. Mean body weight, height, waist circumference, and body mass index among adults: United States, 1999–2000 through 2015–2016. Natl Health Stat Report 2018:1–16.

  96. Avila C, Holloway AC, Hahn MK, et al. An overview of links between obesity and mental health. Curr Obes Rep. 2015;4:303–310.

    PubMed  Google Scholar 

  97. Meyer-Lindenberg A, Domes G, Kirsch P, et al. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci. 2011;12:524–538.

    CAS  PubMed  Google Scholar 

  98. Striepens N, Kendrick KM, Maier W, et al. Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front Neuroendocrinol. 2011;32:426–450.

    CAS  PubMed  Google Scholar 

  99. Atladottir HO, Thorsen P, Schendel DE, et al. Association of hospitalization for infection in childhood with diagnosis of autism spectrum disorders: a Danish cohort study. Arch Pediatr Adolesc Med. 2010;164:470–477.

    PubMed  Google Scholar 

  100. Atladottir HO, Henriksen TB, Schendel DE, et al. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics. 2012;130:e1447–e1454.

    PubMed  Google Scholar 

  101. Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353:772–777.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Knuesel I, Chicha L, Britschgi M, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10:643–660.

    CAS  PubMed  Google Scholar 

  103. Wu WL, Adams CE, Stevens KE, et al. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring. Brain Behav Immun. 2015;46:192–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol. 2017;14:9–21.

    CAS  PubMed  Google Scholar 

  105. Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167:1897.

    CAS  PubMed  Google Scholar 

  106. Zhang JC, Yao W, Dong C, et al. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis. Transl Psychiatry. 2017;7:e1138.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Weiss R, Bitton A, Ben Shimon M, et al. Annexin A2, autoimmunity, anxiety and depression. J Autoimmun. 2016;73:92–99.

    CAS  PubMed  Google Scholar 

  108. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799–809.

    CAS  PubMed  Google Scholar 

  109. Coretti L, Cristiano C, Florio E, et al. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Sci Rep. 2017;7:45356.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang M, Perry K, Weber MD, et al. Social peers rescue autism-relevant sociability deficits in adolescent mice. Autism Res. 2011;4:17–27.

    PubMed  Google Scholar 

  111. Ruskin DN, Murphy MI, Slade SL, et al. Ketogenic diet improves behaviors in a maternal immune activation model of autism spectrum disorder. PLoS ONE. 2017;12:e0171643.

    PubMed  PubMed Central  Google Scholar 

  112. Evangeliou A, Vlachonikolis I, Mihailidou H, et al. Application of a ketogenic diet in children with autistic behavior: pilot study. J Child Neurol. 2003;18:113–118.

    PubMed  Google Scholar 

  113. Herbert MR, Buckley JA. Autism and dietary therapy: case report and review of the literature. J Child Neurol. 2013;28:975–982.

    PubMed  Google Scholar 

  114. Liebhaber GM, Riemann E, Baumeister FA. Ketogenic diet in Rett syndrome. J Child Neurol. 2003;18:74–75.

    PubMed  Google Scholar 

  115. Castro K, Baronio D, Perry IS, et al. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr Neurosci. 2017;20:343–350.

    CAS  PubMed  Google Scholar 

  116. Ruskin DN, Svedova J, Cote JL, et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS ONE. 2013;8:e65021.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ruskin DN, Fortin JA, Bisnauth SN, et al. Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse. Physiol Behav. 2017;168:138–145.

    CAS  PubMed  Google Scholar 

  118. Verpeut JL, DiCicco-Bloom E, Bello NT. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice. Physiol Behav. 2016;161:90–98.

    CAS  PubMed  Google Scholar 

  119. Klein MS, Newell C, Bomhof MR, et al. Metabolomic Modeling To Monitor Host Responsiveness to Gut Microbiota Manipulation in the BTBR(T + tf/j) Mouse. J Proteome Res. 2016;15:1143–1150.

    CAS  PubMed  Google Scholar 

  120. Newell C, Bomhof MR, Reimer RA, et al. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism. 2016;7:37.

    PubMed  PubMed Central  Google Scholar 

  121. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563.

    CAS  PubMed  Google Scholar 

  122. Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32:1720–1724.

    CAS  Google Scholar 

  123. Oliveira G, Diogo L, Grazina M, et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005;47:185–189.

    CAS  PubMed  Google Scholar 

  124. Masino SA, Kawamura M Jr, Plotkin LM, et al. The relationship between the neuromodulator adenosine and behavioral symptoms of autism. Neurosci Lett. 2011;500:1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gano LB, Patel M, Rho JM. Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res. 2014;55:2211–2228.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Naviaux JC, Schuchbauer MA, Li K, et al. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry. 2014;4:e400.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Naviaux RK, Zolkipli Z, Wang L, et al. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS ONE. 2013;8:e57380.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 2019. https://doi.org/10.1080/19490976.2019.1592421.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hyman SL, Stewart PA, Foley J, et al. The gluten-free/casein-free diet: a double-blind challenge trial in children with autism. J Autism Dev Disord. 2016;46:205–220.

    PubMed  Google Scholar 

  130. Navarro F, Pearson DA, Fatheree N, et al. Are ‘leaky gut’ and behavior associated with gluten and dairy containing diet in children with autism spectrum disorders? Nutr Neurosci. 2015;18:177–185.

    CAS  PubMed  Google Scholar 

  131. Ghalichi F, Ghaemmaghami J, Malek A, et al. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J Pediatr. 2016;12:436–442.

    CAS  PubMed  Google Scholar 

  132. El-Rashidy O, El-Baz F, El-Gendy Y, et al. Ketogenic diet versus gluten free casein free diet in autistic children: a case-control study. Metab Brain Dis. 2017;32:1935–1941.

    CAS  PubMed  Google Scholar 

  133. Adams JB, Audhya T, Geis E, et al. Comprehensive nutritional and dietary intervention for autism spectrum disorder—a randomized, controlled 12-month trial. Nutrients. 2018;10:369. https://doi.org/10.3390/nu10030369.

    Article  CAS  PubMed Central  Google Scholar 

  134. Liang D, Longgui N, Guoqiang X. Efficacy of different probiotic protocols in irritable bowel syndrome: a network meta-analysis. Medicine (Baltimore). 2019;98:e16068.

    Google Scholar 

  135. Arnold LE, Luna RA, Williams K, et al. Probiotics for gastrointestinal symptoms and quality of life in autism: a placebo-controlled pilot trial. J Child Adolesc Psychopharmacol. 2019;29:659–669.

    PubMed  PubMed Central  Google Scholar 

  136. Sanctuary MR, Kain JN, Chen SY, et al. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS ONE. 2019;14:e0210064.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ghaleiha A, Alikhani R, Kazemi MR, et al. Minocycline as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind placebo-controlled trial. J Child Adolesc Psychopharmacol. 2016;26:784–791.

    CAS  PubMed  Google Scholar 

  138. Minshawi NF, Wink LK, Shaffer R, et al. A randomized, placebo-controlled trial of D-cycloserine for the enhancement of social skills training in autism spectrum disorders. Mol Autism. 2016;7:2.

    PubMed  PubMed Central  Google Scholar 

  139. Kang DW, Adams JB, Gregory AC, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5:10.

    PubMed  PubMed Central  Google Scholar 

  140. Kang DW, Adams JB, Coleman DM, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9:5821.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Ann Luna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kara G. Margolis and Ruth Ann Luna are co-senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saurman, V., Margolis, K.G. & Luna, R.A. Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder. Dig Dis Sci 65, 818–828 (2020). https://doi.org/10.1007/s10620-020-06133-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06133-5

Keywords

Navigation