Skip to main content
Log in

Lurbinectedin (PM01183), a selective inhibitor of active transcription, effectively eliminates both cancer cells and cancer stem cells in preclinical models of uterine cervical cancer

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin on cervical cancer with a special focus on its effects on cancer stem cells (CSCs). Methods Using two cervical cell lines (ME180 and CaSki cells), the antitumor effects of lurbinectedin were assessed in vitro using the MTS assay and colony formation assay. The growth inhibitory effects of paclitaxel and cisplatin were also evaluated as controls. By employing ALDH1 activity as a marker of CSCs, the antitumor effects of lurbinectedin on cervical CSCs and non-CSCs were individually evaluated. Finally, we investigated the mechanisms by which lurbinectedin eliminated cervical CSCs. Results Lurbinectedin had significant antitumor activity toward cervical cancer cells at low nanomolar concentrations in vitro. Mouse xenografts of cervical cancer revealed that lurbinectedin significantly inhibits tumor growth. The growth-inhibitory effect of lurbinectedin was greater than that of cisplatin and paclitaxel. ALDH-high CSCs were observed in both cervical cancer cell lines (4.4% and 2.4% in ME180 and CaSki cells, respectively). Lurbinectedin downregulated stem cell-related gene expression (Oct4, Nanog, and SOX2), inhibited HDAC1 activity, and effectively eliminated ALDH-high CSCs. Conclusions Lurbinectedin is highly effective on uterine cervical cancer because it eliminates CSCs, and lurbinectedin is a promising agent to overcome platinum resistance in cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Leath CA, Straughn JM (2013) Chemotherapy for advanced and recurrent cervical carcinoma: results from cooperative group trials. Gynecol Oncol 129:251–257. https://doi.org/10.1016/j.ygyno.2012.12.035

    Article  CAS  PubMed  Google Scholar 

  3. Tewari KS, Sill MW, Long HJ, Penson RT, Huang H, Ramondetta LM et al (2014) Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med 370:734–743. https://doi.org/10.1056/NEJMoa1309748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moore DH, Tian C, Monk BJ, Long HJ, Omura GA, Bloss JD (2010) Prognostic factors for response to cisplatin-based chemotherapy in advanced cervical carcinoma: a gynecologic oncology group study. Gynecol Oncol 116:44–49. https://doi.org/10.1016/j.ygyno.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  5. Hisamatsu T, Mabuchi S, Yoshino K, Fujita M, Enomoto T, Hamasaki T, Kimura T (2012) Prediction of progression-free survival and response to paclitaxel plus carboplatin in patients with recurrent or advanced cervical cancer. Int J Gynecol Cancer 22:623–629. https://doi.org/10.1097/IGC.0b013e3182473277

    Article  PubMed  Google Scholar 

  6. Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13:497–512. https://doi.org/10.1038/nrd4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  8. López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A (2012) Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer 12:48. https://doi.org/10.1186/1471-2407-12-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumazawa S, Kajiyama H, Umezu T, Mizuno M, Suzuki S, Yamamoto E, Mitsui H, Sekiya R, Shibata K, Kikkawa F (2014) Possible association between stem-like hallmark and radioresistance in human cervical carcinoma cells. J Obstet Gynaecol Res 40:1389–1398. https://doi.org/10.1111/jog.12357

    Article  CAS  PubMed  Google Scholar 

  10. Chhabra R (2015) Cervical cancer stem cells: opportunities and challenges. J Cancer Res Clin Oncol 141:1889–1897. https://doi.org/10.1007/s00432-014-1905-y

    Article  CAS  PubMed  Google Scholar 

  11. Leal JF, Martínez-Díez M, García-Hernández V, Moneo V, Domingo A, Bueren-Calabuig JA, Negri A, Gago F, Guillén-Navarro MJ, Avilés P, Cuevas C, García-Fernández LF, Galmarini CM (2010) PM01183, a new DNA minor groove covalent binder with potent in vitro and in vivo anti-tumour activity. Br J Pharmacol 161:1099–1110. https://doi.org/10.1111/j.1476-5381.2010.00945.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takahashi R, Mabuchi S, Kawano M, Sasano T, Matsumoto Y, Kuroda H, Kozasa K, Hashimoto K, Sawada K, Kimura T (2016) Preclinical investigations of PM01183 (Lurbinectedin) as a single agent or in combination with other anticancer agents for clear cell carcinoma of the ovary. PLoS One 11:e0151050. https://doi.org/10.1371/journal.pone.0151050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuroda H, Mabuchi S, Kozasa K, Yokoi E, Matsumoto Y, Komura N, Kawano M, Hashimoto K, Sawada K, Kimura T (2017) PM01183 inhibits myeloid-derived suppressor cells in vitro and in vivo. Immunotherapy 9:805–817. https://doi.org/10.2217/imt-2017-0046

    Article  CAS  PubMed  Google Scholar 

  14. Poveda A, Del Campo JM, Ray-Coquard I, Alexandre J, Provansal M, Guerra Alía EM et al (2017) Phase II randomized study of PM01183 versus topotecan in patients with platinum-resistant/refractory advanced ovarian cancer. Ann Oncol 28:1280–1287. https://doi.org/10.1093/annonc/mdx111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. NCT02421588 Clinical Trials. gov. A Service of the U.S. National Institute of Health. Available from: http://www.clinicaltrials.gov (Accessed; August 30, 2015)

  16. Nozawa S, Tsukazaki K, Sakayori M, Jeng CH, Iizuka R (1988) Establishment of a human ovarian clear cell carcinoma cell line (RMG-I) and its single cell cloning--with special reference to the stem cell of the tumor. Hum Cell 1:426–435

    CAS  PubMed  Google Scholar 

  17. Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR (2007) RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res 13:4261–4270. https://doi.org/10.1158/1078-0432.CCR-06-2770

    Article  CAS  PubMed  Google Scholar 

  18. Vidal A, Muñoz C, Guillén MJ, Moretó J, Puertas S, Martínez-Iniesta M et al (2012) Lurbinectedin (PM01183), a new DNA minor groove binder, inhibits growth of orthotopic primary graft of cisplatin-resistant epithelial ovarian cancer. Clin Cancer Res 18:5399–5411. https://doi.org/10.1158/1078-0432.CCR-12-1513

    Article  CAS  PubMed  Google Scholar 

  19. Liu SY, Zheng PS (2013) High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer. Oncotarget 4:2462–2475. https://doi.org/10.18632/oncotarget.1578

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang L, Guo H, Lin C, Yang L, Wang X (2014) Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line. Mol Med Rep 9:2117–2123. https://doi.org/10.3892/mmr.2014.2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Liu X, Ren Y, Zhang J, Chen J, Zhou W, Guo W, Wang X, Chen H, Li M, Yuan X, Zhang X, Yang J, Wu C (2017) Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity. Cell Death Dis 8:e2746. https://doi.org/10.1038/cddis.2016.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chikamatsu K, Ishii H, Murata T, Sakakura K, Shino M, Toyoda M, Takahashi K, Masuyama K (2013) Alteration of cancer stem cell-like phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck. Cancer Sci 104:1468–1475. https://doi.org/10.1111/cas.12271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Del Bufalo D, Desideri M, De Luca T, Di Martile M, Gabellini C, Monica V et al (2014) Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer. Mol Cancer 13:230. https://doi.org/10.1186/1476-4598-13-230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salvador MA, Wicinski J, Cabaud O, Toiron Y, Finetti P, Josselin E, Lelievre H, Kraus-Berthier L, Depil S, Bertucci F, Collette Y, Birnbaum D, Charafe-Jauffret E, Ginestier C (2013) The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clin Cancer Res 19:6520–6531. https://doi.org/10.1158/1078-0432.CCR-13-0877

    Article  CAS  PubMed  Google Scholar 

  25. Aztopal N, Erkisa M, Erturk E, Ulukaya E, Tokullugil AH, Ari F (2018) Valproic acid, a histone deacetylase inhibitor, induces apoptosis in breast cancer stem cells. Chem Biol Interact 280:51–58. https://doi.org/10.1016/j.cbi.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  26. Di Pompo G, Salerno M, Rotili D, Valente S, Zwergel C, Avnet S et al (2015) Novel histone deacetylase inhibitors induce growth arrest, apoptosis, and differentiation in sarcoma cancer stem cells. J Med Chem 58:4073–4079. https://doi.org/10.1021/acs.jmedchem.5b00126

    Article  CAS  PubMed  Google Scholar 

  27. Bahadori HR, Green MR, Catapano CV (2001) Synergistic interaction between topotecan and microtubule-interfering agents. Cancer Chemother Pharmacol 48:188–196

    Article  CAS  PubMed  Google Scholar 

  28. Tiersten AD, Selleck MJ, Hershman DL, Smith D, Resnik EE, Troxel AB, Brafman LB, Shriberg L (2004) Phase II study of topotecan and paclitaxel for recurrent, persistent, or metastatic cervical carcinoma. Gynecol Oncol 92:635–638. https://doi.org/10.1016/j.ygyno.2003.11.019

    Article  CAS  PubMed  Google Scholar 

  29. Kim BW, Cho H, Choi CH, Ylaya K, Chung JY, Kim JH, Hewitt SM (2015) Clinical significance of OCT4 and SOX2 protein expression in cervical cancer. BMC Cancer 15:1015. https://doi.org/10.1186/s12885-015-2015-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martinez-Cruzado L, Tornin J, Rodriguez A, Santos L, Allonca E, Fernandez-Garcia MT, Astudillo A, Garcia-Pedrero JM, Rodriguez R (2017) Trabectedin and Campthotecin synergistically eliminate Cancer stem cells in cell-of-origin sarcoma models. Neoplasia 19:460–470. https://doi.org/10.1016/j.neo.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elez ME, Tabernero J, Geary D, Macarulla T, Kang SP, Kahatt C, Pita ASM, Teruel CF, Siguero M, Cullell-Young M, Szyldergemajn S, Ratain MJ (2014) First-in-human phase I study of Lurbinectedin (PM01183) in patients with advanced solid tumors. Clin Cancer Res 20:2205–2214. https://doi.org/10.1158/1078-0432.CCR-13-1880

    Article  CAS  PubMed  Google Scholar 

  32. Major AG, Pitty LP, Farah CS (2013) Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cells Int 2013:319489–319413. https://doi.org/10.1155/2013/319489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737. https://doi.org/10.1074/jbc.M502573200

    Article  CAS  PubMed  Google Scholar 

  34. Miyajima C, Inoue Y, Hayashi H (2015) Pseudokinase tribbles 1 (TRB1) negatively regulates tumor-suppressor activity of p53 through p53 deacetylation. Biol Pharm Bull 38:618–624. https://doi.org/10.1248/bpb.b15-00003

    Article  CAS  PubMed  Google Scholar 

  35. Liu K, Lee J, Kim JY, Wang L, Tian Y, Chan ST, et al. Mitophagy Controls the Activities of Tumor Suppressor p53 to Regulate Hepatic Cancer Stem Cells. Mol Cell. 2017;68:281–292.e5. https://doi.org/10.1016/j.molcel.2017.09.022

  36. Li M, He Y, Dubois W, Wu X, Shi J, Huang J (2012) Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol Cell 46:30–42. https://doi.org/10.1016/j.molcel.2012.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP (2015) Targeting notch, hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12:445–464. https://doi.org/10.1038/nrclinonc.2015.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Moe Matsui for her secretarial assistance and Ayako Okamura for her technical assistance.

Funding

This study was supported by Grants-in-aid for General Scientific Research no. T17 K16849, A15H025640, and T17 K112760 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Mabuchi.

Ethics declarations

Conflicts of interest statement

All authors have declared that they have no conflict of interests to disclose.

Eriko Yokoi declares that he has no conflict of interest. Seiji Mabuchi declares that he has no conflict of interest. Kotaro Shimura declares that he has no conflict of interest. Naoko Komura declares that he has no conflict of interest. Katsumi Kozasa declares that he has no conflict of interest. Hiromasa Kuroda declares that he has no conflict of interest. Ryoko Takahashi declares that he has no conflict of interest. Tomoyuki Sasano declares that he has no conflict of interest. Mahiru Kawano declares that he has no conflict of interest. Yuri Matsumoto declares that he has no conflict of interest. Michiko Kodama declares that he has no conflict of interest. Kae Hashimoto declares that he has no conflict of interest. Kenjiro Sawada declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

For this type of study, formal consent is not required.

Electronic supplementary material

ESM 1

(PPTX 1353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoi, E., Mabuchi, S., Shimura, K. et al. Lurbinectedin (PM01183), a selective inhibitor of active transcription, effectively eliminates both cancer cells and cancer stem cells in preclinical models of uterine cervical cancer. Invest New Drugs 37, 818–827 (2019). https://doi.org/10.1007/s10637-018-0686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0686-6

Keywords

Navigation