Skip to main content

Advertisement

Log in

Head morphometry of Orestias (Cyprinodontiformes). Response to extreme Southern Altiplano systems?

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The distribution of Orestias (Cypriniforms) species in the southern western Altiplano (17ºS-22ºS) is allopatric; the seven species described inhabit different freshwater systems with extreme climatic characteristics and different ecological conditions, factors that would have enhanced interspecific differentiation. To analyze their head differences we compared jaw morphology of eight species of Orestias, seven southern ones and one from Puno Peru, using linear and geometric morphometrics. We found differences among the species with both methods. Nevertheless, none of the external measurements by themselves allows classification of any of the species or populations. The geometric analysis showed differences related to feeding structures such as a protractile jaw, separating the western species in two groups: a northern group with O. chungarensis, O. parinacotensis, O. piacotensis, O. laucaensis, O. puni and O. cf. agassii and a southern group, O. gloriae and O. ascotanensis. The results from this methodology reaffirmed the importance of the extreme environmental conditions of the Altiplano systems to explain the process of adaptation described for the specious genus Orestias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution.’ Ital J Zool 71(1):5–16

  • Adams DC, Collyer M, Sherratt E (2015) Geometric morphometric analyses of 2D/3D landmark data

  • Albertson RC, Streelman JT, Kocher TD (2003) Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proc Natl Acad Sci 100(9):5252–5257

    Article  CAS  Google Scholar 

  • Albertson RC, Streelman JT, Kocher TD, Yelick PC (2005) Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. Proc Natl Acad Sci USA 102(45):16287–16292

    Article  CAS  Google Scholar 

  • Anderson MJ (2005) Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland

  • Arratia G (1982) Peces del Altiplano de Chile. In: Veloso A, Bustos E (eds) El hombre y los ecosistemas de montaña MAB-6. El ambiente natural y las poblaciones humanas de Los Andes del Norte Grande de Chile, Volumen I. La vegetación y los vertebrados inferiores de los pisos altitudinales entre Arica y El Lago Chungará. ROSTLAC, UNESCO, Montevideo, Uruguay, pp 93–133

    Google Scholar 

  • Arratia G, Vila I, Lam N, Guerrero CJ, Quezada-Romegialli C (2017) Morphological and taxonomic descriptions of a new genus and species of killifishes (Teleostei: Cyprinodontiformes) from the high Andes of northern Chile. Plos One 12(8):e0181989

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

  • Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cruz-Jofré F, Morales P, Vila I, Esquer-Garrigos Y, Hugueny B, Gaubert P, Poulin E, Méndez M (2016) Geographical isolation and genetic differentiation: the case of Orestias ascotanensis (Teleostei: Cyprinodontidae), an Andean killifish inhabiting a highland salt pan. Biol J Linn Soc 117(4):747–759. https://doi.org/10.1111/bij.12704

    Article  Google Scholar 

  • Davenport J, Sayer MDJ (1993) Physiological determinants of distribution in fish. J Fish Biol 43:121–145

    Google Scholar 

  • Douglas ME, Matthews WJ (1992) Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage, Oikos: 213–224

  • Dryden IL, Mardia KV (2016) Statistical shape analysis: With applications in R, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Elliott NG, Haskard K, Koslow JA (1995) Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. J Fish Biol 46:202–220

    Article  Google Scholar 

  • Guerrero CJ, Méndez MA, Vila I (2015) Caracterización trófica de Orestias (Teleostei: Cyprinodontidae) en el Parque Nacional Lauca. Gayana (Concepción) 79(1):18–25

    Article  Google Scholar 

  • Higham T, Day S, Wainwright P (2006) Multidimensional analysis of suction feeding performance in fishes: Fluid speed, acceleration, strike accuracy and the ingested volume of water. J Exp Biol 209:2713–2725. https://doi.org/10.1242/jeb.02315

    Article  PubMed  Google Scholar 

  • Keller B, Soto D (1998) Hydrogeologic influences on the preservation of Orestias ascotanensis (Teleostei: Cyprinodontidae), in Salar de Ascotán, Northern Chile. Rev Chil Hist Nat 71:147–156

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11(2):353–357

    Article  Google Scholar 

  • Langerhans RB, Layman CA, Langerhans AK, Dewitt TJ (2003) Habitat-associated morphological divergence in two Neotropical fish species. Biol J Lin Soc 80(4):689–698

    Article  Google Scholar 

  • Lauzanne L (1982) Les Orestias (Pisces, Cyprinodontidae) du Petit lac Titicaca. Rev d’Hydrobiol Trop 15:39–70

    Google Scholar 

  • Lüssen A, Falk TM, Villwock W (2003) Phylogenetic patterns in populations of Chilean species of the genus Orestias (Teleostei: Cyprinodontidae): results of mitochondrial DNA analysis. Mol Phylogenet Evol 29(1):151–160

  • Maldonado E, Hubert N, Sagnes P, De Mérona B (2009) Morphology–diet relationships in four killifishes (Teleostei, Cyprinodontidae, Orestias) from Lake Titicaca. J Fish Biol 74(3):502–520

    Article  CAS  Google Scholar 

  • Mann G (1954) Vida de los peces en aguas chilenas. Ministerio de Agricultura. Universidad de Chile. Imprenta y Litografía Stanley. Santiago. Chile, pp 342

  • Márquez-García M, Vila I, Hinojosa Lf, Méndez MA, Carvajal JL, Sabando MC (2009) Distribution and seasonal fluctuations in the aquatic biodiversity of the southern Altiplano. Limnol Ecol Manag Inland Waters 39(4):314–318

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36(2):235–247

  • Motta PJ (1984) Mechanics and functions of jaw protrusion in teleost fishes: a review. Copeia: 1–18

  • Motta PJ, Kotrschal KM (1992) Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth J Zool 42:400–415

    Google Scholar 

  • Northcote TG (2000) Ecological interactions among an orestiid (Pisces Cyprinodontidae) species flock in the littoral zone of Lake Titicaca. Adv Ecol Res 31:399–420

  • Parenti LR (1984) A taxonomic revision of the Andean killifish genus Orestias (Cyprinodontiformes, Cyprinodontidae). Bull Am Mus Nat Hist 178:107–214

    Google Scholar 

  • Parenti LR (1984) Biogeography of the Andean killifish genus Orestias with comments on the species flock concept. In: Echelle AA, Kornfield I (eds) Evol Fish Species Flocks. University of Maine at Orono Press, Orono

    Google Scholar 

  • Parker A, Kornfield I (1995) Molecular perspective on evolution and zoogeography of Cyprinodontid killifishes (Teleostei; Atherinomorpha). Copeia: 8–21

  • Parsons KJ, Robinson BW (2006) Replicated evolution of integrated plastic responses during early adaptive divergence. Evolution 60(4):801–813

    Article  Google Scholar 

  • Parsons KJ, Robinson BW (2007) Foraging performance of diet-induced morphotypes in pumpkinseed sunfish (Lepomis gibbosus) favours resource polymorphism. J Evol Biol 20(2):673–684

    Article  CAS  Google Scholar 

  • Placzek C, Quade J, Patchett J (2006) Geochronology and stratigraphy of late Pleistocene lakes cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geol Soc Am Bull 118(5/6):515–532

    Article  Google Scholar 

  • Risacher F, Alonso H, Salazar C (2003a) Hydrochemistry of two adyacent acid saline lakes in the Andes of northern Chile. Chem Geol 187:39–57

    Article  Google Scholar 

  • Risacher F, Alonso H, Salazar C (2003b) The origin of brines and salts in Chilean salars: a hydrochemical view. Earth Sci Rev 63:249–293

    Article  CAS  Google Scholar 

  • Riveros J, Vila I, Mendez MA (2012) Trophic niche of Orestias agassii (Cuvier and Valenciennes, 1846) in the streams system of salar de Huasco (20 degrees 05’S, 68 degrees 15’W). Gayana 76(2):79–91

    Google Scholar 

  • Rohlf FJ (1990) Dennis slice, extensions of the procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59. https://doi.org/10.2307/2992207

    Article  Google Scholar 

  • Rohlf FJ (2012) SB Morphometrics. Department of Ecology and Evolution, State University of New York , Stony Brook. http://life.bio.sunysb.edu/morph/

  • Rohlf FJ, Marcus LF (1993) A revolution morphometrics. Trends Ecol Evol 8(4):129–132

    Article  Google Scholar 

  • Rondanelli R, Molina A, Falvey M (2015) The Atacama surface solar maximum. Bull 625 Am Meteorl Soc 96:405–418. https://doi.org/10.1175/BAMS-D-13-00175.1

    Article  Google Scholar 

  • Schaeffer B, Rosen DE (1961) Major adaptive levels in the evolution of the actinopterygian feeding mechanism. Am Zool :187–204

  • Scott S (2010) Sistemática y filogenia de Orestias del complejo agassizii (Teleostei: Cyprinodontidae) de la Puna [Unpublished doctoral dissertation]. Santiago, Chile: Facultad de Ciencias, Universidad de Chile

  • Skulason S, Smith TB (1995) Resource polymorphisms in vertebrates. Trends Ecol Evol 10(9):366–370

    Article  CAS  Google Scholar 

  • Slice DE (1998) Morpheus et al.: software for morphometric research. Department of Ecology and Evolution. State University of New York, Stony Brook, New York

    Google Scholar 

  • Svanbäck R, Eklöv P (2002) Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131(1):61–70

    Article  Google Scholar 

  • Team RC (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. 2013. http://www.R-project.org

  • Toro IMV, Manriquez SG, Suazo GI (2010) Morfometría geométrica y el estudio de las formas biológicas: de la morfología descriptiva a la morfología cuantitativa. Int J Morphol 28(4):977–990

    Article  Google Scholar 

  • Vila I (2006) A new species of killifish in the genus Orestias (Teleostei: Cyprinodontidae) from the southern high Andes, Chile. Copeia 2006(3):472–477

    Article  Google Scholar 

  • Vila I, Pinto M (1986) A new species of Killifish (Pisces, Cyprinodontidae) from the Chilean Altiplano. Rev d’Hydrobiol Trop 19:233–239

    Google Scholar 

  • Vila I, Pardo R, Habit E, Dyer B (2006) Peces límnicos: diversidad, origen y estado de conservación. In: Vila I, Veloso A, Schlatter R, Ramirez C (eds) Macrófitas y vertebrados de los sistemas límnicos de Chile. Editorial Universitaria, Santiago

  • Vila I, Scott S, Lam N, Iturra P, Mendez MA (2010) Karyological and morphological analysis of divergence among species of the killifish genus Orestias (Teleostei: Cyprinodontidae) from the southern Altiplano. Origin and phylogenetic interrelationships of Teleosts, pp 471–480

  • Vila I, Scott S, Mendez MA, Valenzuela F, Iturra P, Poulin E (2011) Orestias gloriae, a new species of cyprinodontid fish from saltpan spring of the southern high Andes (Teleostei: Cyprinodontidae). Ichthyol Explor Freshwaters 22:345–353

    Google Scholar 

  • Vila I, Morales P, Scott S, Poulin E, Véliz D, Harrod C, Méndez MA (2013) Phylogenetic and phylogeographic analysis of the genus Orestias (Teleostei: Cyprinodontidae) in the southern Chilean Altiplano: the relevance of ancient and recent divergence processes in speciation. J Fish Biol 82(3):927–943

    Article  CAS  Google Scholar 

  • Wainwright PC (1991) Ecomorphology: experimental functional anatomy for ecological problems. Am Zool 31(4):680–693

    Article  Google Scholar 

  • Waltzek TB, Wainwright PC (2003) Functional morphology of extreme jaw protrusion in neotropical cichlids. J Morphol 257(1):96–106

    Article  Google Scholar 

  • Westneat MW (2004) Evolution of levers and linkages in the feeding mechanisms of Fishes1. Integr Comp Biol 44(5):378–389

    Article  Google Scholar 

  • Westneat MW (2005) Skull biomechanics and suction feeding in fishes. Fish Physiol 23:29–75

    Article  Google Scholar 

  • Westneat MW, Wainwright PC (1989) Feeding mechanism of Epibulus insidiator (Labridae; Teleostei): evolution of a novel functional system. J Morphol 202(2):129–150

    Article  Google Scholar 

  • Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61(4):343–365

    Article  Google Scholar 

  • Winemiller KO, Kelso-Winemiller LC, Brenkert AL (1995) Ecomorphological diversification and convergence in fluvial cichlid fishes. In: Ecomorphology of fishes (pp 235–261). Springer Netherlands, Dordrecht

Download references

Acknowledgements

I.V.Fondecyt 1140543, S.S. Fondecyt 3130575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Vila.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, P., Scott, S., Tobar, I. et al. Head morphometry of Orestias (Cyprinodontiformes). Response to extreme Southern Altiplano systems?. Environ Biol Fish 103, 953–964 (2020). https://doi.org/10.1007/s10641-020-00997-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-020-00997-2

Keywords

Navigation