Skip to main content
Log in

Pigeon odor varies with experimental exposure to trace metal pollution

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Trace metals are chemical pollutants that have well-known noxious effects on wildlife and that are current major environmental issues in urban habitats. Previous studies have demonstrated their negative (e.g. lead) or positive (e.g. zinc) effects on body condition, immunity and reproductive success. Because of their effects on condition, trace metals are likely to influence the production of condition-dependent ornaments. The last decade has revealed that bird odors, like mammal odors, can convey information on individual quality and might be used as secondary sexual ornaments. Here, we used solid-phase microextraction headspace sampling with gas chromatography—mass spectrometry to investigate whether plumage scent varied with experimental supplementation in lead and/or zinc in feral pigeons. Zinc supplementation (alone or in combination with lead) changed the proportion of several volatiles, including an increase in the proportion of hydroxy-esters. The production of these esters, that most likely originate from preen gland secretions, may be costly and might thus be reduced by stress induced by zinc deficiency. Although lead is known to negatively impact pigeon condition, it did not statistically affect feather scent, despite most of the volatiles that increased with zinc exposure tended to be decreased in lead-supplemented pigeons. Further studies should evaluate the functions of plumage volatiles to predict how trace metals can impact bird fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amo L, Avilés JM, Parejo D, Peña A, Rodríguez J, Tomás G (2012) Sex recognition by odour and variation in the uropygial gland secretion in starlings. J Anim Ecol 81:605–613

    Article  Google Scholar 

  • Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436. https://doi.org/10.1016/j.anbehav.2011.05.029

    Article  Google Scholar 

  • Azimi S, Rocher V, Muller M, Moilleron R, Thevenot DR (2005) Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France). Sci Total Environ 337:223–239

    Article  CAS  Google Scholar 

  • Balthazart J, Schoffeniels E (1979) Pheromones are involved in the control of sexual-behavior in birds. Naturwissenschaften 66:55–56

    Article  CAS  Google Scholar 

  • Balthazart J, Taziaux M (2009) The underestimated role of olfaction in avian reproduction? Behav Brain Res 200:248–259

    Article  CAS  Google Scholar 

  • Baos R, Blas J, Bortolotti GR, Marchant TA, Hiraldo F (2006) Adrenocortical response to stress and thyroid hormone status in free-living nestling white storks (Ciconia ciconia) exposed to heavy metal and arsenic contamination. Environ Health Perspect 114:1497

    Article  CAS  Google Scholar 

  • Berglund ÅM, Sturve J, Förlin L, Nyholm N (2007) Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden Environ Res 105:330–339

    Article  CAS  Google Scholar 

  • Bernier UR, Allan SA, Quinn BP, Kline DL, Barnard DR, Clark GG (2008) Volatile compounds from the integument of white leghorn chickens (Gallus gallus domesticus L.): candidate attractants of ornithophilic mosquito species. J Sep Sci 31:1092–1099

    Article  CAS  Google Scholar 

  • Blaustein AR (1981) Sexual selection and mammalian olfaction. Am Nat 117:1006–1010

    Article  Google Scholar 

  • Bombail V et al. (2018) In search of stress odours across species: Behavioural responses of rats to faeces from chickens and rats subjected to various types of stressful events. Appl Anim Behav Sci 205:216–226. https://doi.org/10.1016/j.applanim.2017.10.013

    Article  Google Scholar 

  • Borges LMF, de Oliveira Filho JG, Ferreira LL, Louly CCB, Pickett JA, Birkett MA (2015) Identification of non-host semiochemicals for the brown dog tick, Rhipicephalus sanguineus sensu lato (Acari: Ixodidae), from tick-resistant beagles, Canis lupus familiaris. Ticks Tick-borne Dis 6:676–682

    Article  Google Scholar 

  • Brückner A, Heethoff M (2017) A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 27:33–46

    Article  CAS  Google Scholar 

  • Burger BV, Visser R, Moses A, Le Roux M (2006) Elemental sulfur identified in urine of cheetah. Acinonyx jubatus J Chem Ecol 32:1347–1352

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (2005) Effects of lead on learning in herring gulls: an avian wildlife model for neurobehavioral deficits. Neurotoxicology 26:615–624

    Article  CAS  Google Scholar 

  • Campagna S, Mardon J, Celerier A, Bonadonna F (2012) Potential semiochemical molecules from birds: a practical and comprehensive compilation of the last 20 years studies. Chem Senses 37:3–25. https://doi.org/10.1093/chemse/bjr067

    Article  Google Scholar 

  • Caro SP, Balthazart J, Bonadonna F (2015) The perfume of reproduction in birds: Chemosignaling in avian social life. Horm Behav 68:25–42. https://doi.org/10.1016/j.yhbeh.2014.06.001

    Article  CAS  Google Scholar 

  • Castellanos P, del Olmo E, Fernández-Santos MR, Rodríguez-Estival J, Garde JJ, Mateo R (2015) Increased chromatin fragmentation and reduced acrosome integrity in spermatozoa of red deer from lead polluted sites. Sci Total Environ 505:32–38

    Article  CAS  Google Scholar 

  • Charpentier MJ, Barthes N, Proffit M, Bessière JM, Grison C (2012) Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct Ecol 26:769–774

    Article  Google Scholar 

  • Chatelain M, Frantz A, Gasparini J, Leclaire S (2016a) Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon J Avian Biol 47:521–529

    Article  Google Scholar 

  • Chatelain M, Gasparini J, Frantz A (2016b) Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob Change Biol 22:2380–2391

    Article  Google Scholar 

  • Chatelain M, Gasparini J, Frantz A (2016c) Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology 25:521–529

    Article  CAS  Google Scholar 

  • Chatelain M, Gasparini J, Jacquin L, Frantz A (2014) The adaptive function of melanin-based plumage coloration to trace metals. Biol Lett 10 https://doi.org/10.1098/rsbl.2014.0164

  • Chatelain M, Pessato A, Frantz A, Gasparini J, Leclaire S (2017) Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. Oikos

  • Chilgren J, King J (1973) Thermoregulatory responses of Japanese Quail to various air temperatures and humidities. Int J Biometeorol 17:29–40

    Article  Google Scholar 

  • Datnoff LE, Elmer WH, Huber DM (2007) Mineral nutrition and plant disease. American Phytopathological Society (APS Press), St Paul, USA

  • Dauwe T, Bervoets L, Blust R, Eens M (2002) Tissue levels of lead in experimentally exposed zebra finches (Taeniopygia guttata) with particular attention on the use of feathers as biomonitors. Arch Environ Contam Toxicol 42:88–92

    Article  CAS  Google Scholar 

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. https://doi.org/10.1890/08-1823.1

    Article  Google Scholar 

  • delBarco-Trillo J, Burkert B, Goodwin T, Drea C (2011) Night and day: the comparative study of strepsirrhine primates reveals socioecological and phylogenetic patterns in olfactory signals. J Evol Biol 24:82–98

    Article  CAS  Google Scholar 

  • Demayo A, Taylor MC, Taylor KW, Hodson PV, Hammond PB (1982) Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock. Crit Rev Environ Sci Technol 12:257–305

    CAS  Google Scholar 

  • Douglas AE, Dobson AJ (2013) New synthesis: animal communication mediated by microbes: fact or fantasy? J Chem Ecol 39:1149–1149

    Article  CAS  Google Scholar 

  • Douglas HD (2013) Colonial seabird’s paralytic perfume slows lice down: an opportunity for parasite-mediated selection? Int J Parasitol 43:399–407

    Article  CAS  Google Scholar 

  • Douglas HD, Kitaysky AS, Kitaiskaia EV (2008) Seasonal covariation in progesterone and odorant emissions among breeding crested auklets (Aethia cristatella). Horm Behav 54:325–329

    Article  CAS  Google Scholar 

  • Ezenwa VO, Williams AE (2014) Microbes and animal olfactory communication: where do we go from here? BioEssays 36:847–854

    Article  Google Scholar 

  • Ferkin M, Sorokin E, Johnston R, Lee C (1997) Attractiveness of scents varies with protein content of the diet in meadow voles. Anim Behav 53:133–141

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009) Principal component analysis for compositional data with outliers.Environmetrics 20:621–632

    Article  Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    Article  CAS  Google Scholar 

  • Frantz A et al. (2012) Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ Pollut 168:23–28

    Article  CAS  Google Scholar 

  • Gabirot M, Buatois B, Müller CT, Bonadonna F (2018) Odour of King Penguin feathers analysed using direct thermal desorption discriminates between individuals but not sexes. Ibis

  • Gabirot M et al. (2016) Chemical labels differ between two closely related shearwater taxa. J Avian Biol 47:540–551

    Article  Google Scholar 

  • Giraudeau M, Mateos-Gonzalez F, Cotín J, Pagani-Nuñez E, Torné-Noguera A, Senar J (2015) Metal exposure influences the melanin and carotenoid-based colorations in great tits. Sci Total Environ 532:512–516

    Article  CAS  Google Scholar 

  • Godwin HA (2001) The biological chemistry of lead. Curr Opin Chem Biol 5:223–227

    Article  CAS  Google Scholar 

  • Goodwin TE et al. (2016) The role of bacteria in chemical signals of elephant musth: Proximate causes and biochemical pathways. In: Schulte BA (ed) Chemical signals in vertebrates 13. Springer, Cham, pp 63–85

  • Gorissen L, Snoeijs T, Duyse EV, Eens M (2005) Heavy metal pollution affects dawn singing behaviour in a small passerine bird. Oecologia 145:504–509. https://doi.org/10.1007/s00442-005-0091-7

    Article  Google Scholar 

  • Gorman ML, Nedwell DB, Smith RM (1974) Analysis of contents of anal scent pockets of Herpestes auropunctatus (Carnivora-Viverridae). J Zool 172:389–399

    Article  Google Scholar 

  • Goutte A et al. (2014) Demographic consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived bird, the wandering albatross. Proc R Soc Lond B: Biol Sci 281:20133313

  • Grieves LA, Kelly TR, Bernards MA, MacDougall-Shackleton EA (2018) Malarial infection alters wax ester composition of preen oil in songbirds: results of an experimental study. Auk 135:767–776. https://doi.org/10.1642/AUK-17-242.1

    Article  Google Scholar 

  • Hagelin JC, Jones IL (2007) Bird odors and other chemical substances: a defense mechanism or overlooked mode of intraspecific communication? Auk 124:741–761

    Article  Google Scholar 

  • Havlicek J, Roberts SC, Flegr J (2005) Women’s preference for dominant male odour: effects of menstrual cycle and relationship status. Biol Lett 1:256–259

    Article  Google Scholar 

  • Hirao A, Aoyama M, Sugita S (2009) The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behav Process 80:115–120

    Article  Google Scholar 

  • Jacob J, Grimmer G (1975) Gefiederlipide der ringeltaube Columba palumbus/Plumage lipids from the ring dove (Columba palumbus). Z für Naturforsch C 30:363–368

    Article  Google Scholar 

  • Jacob J, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 6. Academic Press, New-York, NY, pp 199–324

    Chapter  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Johnston RE, Bronson F (1982) Endocrine control of female mouse odors that elicit luteinizing hormone surges and attraction in males. Biol Reprod 27:1174–1180

    Article  CAS  Google Scholar 

  • Kaya H, Akbulut M (2015) Effects of waterborne lead exposure in mozambique tilapia: oxidative stress, osmoregulatory responses, and tissue accumulation. J Aquat Anim Health 27:77–87

    Article  CAS  Google Scholar 

  • Kimball BA, Yamazaki K, Kohler D, Bowen RA, Muth JP, Opiekun M, Beauchamp GK (2013) Avian influenza infection alters fecal odor in mallards. PloS ONE 8:e75411

    Article  CAS  Google Scholar 

  • Kirillov V, Stikhareva T, Suleimen Y, Serafimovich M, Kabanova S, Mukanov B (2017) Chemical composition of the essential oil from carnation coniferous (Dianthus acicularis Fisch. ex Ledeb) growing wild in Northern Kazakhstan. Nat Product Res 31:117–123

    Article  CAS  Google Scholar 

  • Koivula MJ, Eeva T (2010) Metal-related oxidative stress in birds. Environ Pollut 158:2359–2370

    Article  CAS  Google Scholar 

  • Krause TE, Krüger O, Kohlmeier P, Caspers BA (2012) Olfactory kin recognition in a songbird. Biol Lett 8:327–329. https://doi.org/10.1098/rsbl.2011.1093

    Article  Google Scholar 

  • Leclaire S, Merkling T, Raynaud C, Giacinti G, Bessière JM, Hatch SA, Danchin E (2011) An individual and a sex odor signature in kittiwakes? Study of the semiochemical composition of preen secretion and preen down feathers. Naturwissenschaften 98:615–624. https://doi.org/10.1016/j.yhbeh.2008.07.002

    Article  CAS  Google Scholar 

  • Leclaire S, Pierret P, Chatelain M, Gasparini J (2014a) Feather bacterial load affects plumage condition, iridescent color, and investment in preening in pigeons. Behav Ecol: aru109, 25:1192–1198

  • Leclaire S, Strandh M, Mardon J, Westerdahl H, Bonadonna F (2017) Odour-based discrimination of similarity at the major histocompatibility complex in birds. In: Proc. R. Soc. B, vol 1846. The Royal Society, p 20162466

  • Leclaire S et al. (2014b) Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird. Sci Rep 4:6920

  • Li Q et al. (2013) Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23:11–20

    Article  CAS  Google Scholar 

  • López-Rull I, Pagán I, Macías Garcia C (2010) Cosmetic enhancement of signal coloration: experimental evidence in the house finch. Behav Ecol 21:781–787. https://doi.org/10.1093/beheco/arq053

    Article  Google Scholar 

  • Mardon J, Saunders JR, Bonadonna F (2011) From preen secretions to plumage: the chemical trajectory of blue petrels’ Halobaena caerulea social scent. J Avian Biol 42:29–38

    Article  Google Scholar 

  • Martin-Vivaldi M, Pena A, Manuel Peralta-Sanchez J, Sanchez L, Ananou S, Ruiz-Rodriguez M, Jose Soler J (2010) Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc R Soc B 277:123–130. https://doi.org/10.1098/rspb.2009.1377

    Article  CAS  Google Scholar 

  • Martín J, López P (2006) Links between male quality, male chemical signals, and female mate choice in Iberian rock lizards. Funct Ecol 20:1087–1096

    Article  Google Scholar 

  • McGraw KJ, Mackillop EA, Dale J, Hauber ME (2002) Different colors reveal different information: how nutritional stress affects the expression of melanin-and structurally based ornamental plumage. J Exp Biol 205:3747–3755

    Google Scholar 

  • Meillère A, Brischoux F, Bustamante P, Michaud B, Parenteau C, Marciau C, Angelier F (2016) Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci Total Environ 566:93–101

    Article  CAS  Google Scholar 

  • Montalti D, Gutiérrez AM, Reboredo G, Salibián A (2005) The chemical composition of the uropygial gland secretion of rock dove Columba livia.Comp Biochem Physiol A: Comp Physiol 140:275–279

    Article  CAS  Google Scholar 

  • Moreno-Rueda G (2015) Body‐mass‐dependent trade‐off between immune response and uropygial gland size in house sparrows Passer domesticus. J Avian Biol 46:40–45

    Article  Google Scholar 

  • Moreno-Rueda G (2017) Preen oil and bird fitness: a critical review of the evidence. Biol Rev 92:2131–2143

    Article  Google Scholar 

  • Moyer BR, Rock AN, Clayton DH (2003) Experimental test of the importance of preen oil in rock doves (Columba livia). Auk 120:490–496

    Article  Google Scholar 

  • Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279:409–411

    Article  CAS  Google Scholar 

  • Nriagu JO (1996) A history of global metal pollution. Science 272:223

    Article  CAS  Google Scholar 

  • Oksanen J et al. (2013) Package ‘vegan’ Community ecology package, version 2

  • Oteiza PI, Olin KL, Fraga CG, Keen CL (1995) Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nutr 125:823

    CAS  Google Scholar 

  • Pap PL, Vágási CI, Bărbos L, Marton A (2013) Chronic coccidian infestation compromises flight feather quality in house sparrows Passer domesticus. Biol J Linn Soc 108:414–428

    Article  Google Scholar 

  • Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM (2005) Lead toxicity update. A brief review. Med Sci Monit 11:RA329–RA336

    CAS  Google Scholar 

  • Penn D, Potts WK (1998) Chemical signals and parasite-mediated sexual selection. Trends Ecol Evol 13:391–396

    Article  CAS  Google Scholar 

  • Piault R, Gasparini J, Bize P, Paulet M, McGraw KJ, Roulin A (2008) Experimental support for the makeup hypothesis in nestling tawny owls (Strix aluco). Behav Ecol 19:703–709

    Article  Google Scholar 

  • Plum LM, Rink L, Haase H (2010) The Essential Toxin: Impact of Zinc on Human Health International. Journal of Environmental Research and Public Health 7:1342

    Article  CAS  Google Scholar 

  • Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    Article  CAS  Google Scholar 

  • Prasad AS (2003) Zinc deficiency: has been known of for 40 years but ignored by global health organisations. Br Med J 326:409

    Article  Google Scholar 

  • Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK (2015) A review on role of essentialtrace elements in health and disease. Journal of Dr NTR university of health sciences 4:75

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Raymer J, Wiesler D, Novotny M, Asa C, Seal U, Mech L (1986) Chemical scent constituents in urine of wolf (Canis lupus) and their dependence on reproductive hormones. J Chem Ecol 12:297–314

    Article  CAS  Google Scholar 

  • Roux KE, Marra PP (2007) The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch Environ Contam Toxicol 53:261–268

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. AMBIO 36:12–19

    Article  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  Google Scholar 

  • Smith S, Burden H, Persad R, Whittington K, de Lacy Costello B, Ratcliffe NM, Probert C (2008) A comparative study of the analysis of human urine headspace using gas chromatography–mass spectrometry. J Breath Res 2:037022

    Article  CAS  Google Scholar 

  • Snoeijs T, Dauwe T, Pinxten R, Darras VM, Arckens L, Eens M (2005) The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch (Taeniopygia guttata). Environ Pollut 134:123–132

    Article  CAS  Google Scholar 

  • Snoeijs T, Dauwe T, Pinxten R, Vandesande F, Eens M (2004) Heavy metal exposure affects the humoral immune response in a free-living small songbird, the great tit (Parus major). Arch Environ Contam Toxicol 46:399–404

    Article  CAS  Google Scholar 

  • Soini HA, Schrock SE, Bruce KE, Wiesler D, Ketterson ED, Novotny MV (2007) Seasonal variation in volatile compound profiles of preen gland secretions of the dark-eyed junco (Junco hyemalis). J Chem Ecol 33:183–198. https://doi.org/10.1007/s10886-006-9210-0

    Article  CAS  Google Scholar 

  • Stefanidou M, Maravelias C, Dona A, Spiliopoulou C (2006) Zinc: a multipurpose trace element. Arch Toxicol 80:1

    Article  CAS  Google Scholar 

  • Tainer JA, Roberts VA, Getzoff ED (1992) Protein metal-binding sites. Curr Opin Biotechnol 3:378–387. https://doi.org/10.1016/0958-1669(92)90166-G

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology. Springer, Basel pp 133–164

  • Thomas RH, Price ER, Seewagen CL, Mackenzie SA, Bernards MA, Guglielmo CG (2010) Use of TLC‐FID and GC‐MS/FID to examine the effects of migratory state, diet and captivity on preen wax composition in White‐throated Sparrows Zonotrichia albicollis. Ibis 152:782–792

    Article  Google Scholar 

  • Troïanowski M, Mondy N, Dumet A, Arcanjo C, Lengagne T (2017) Effects of traffic noise on tree frog stress levels, immunity, and color signaling. Conserv Biol

  • Vallverdú-Coll Nr, Ortiz-Santaliestra ME, Mougeot Fo, Vidal D, Mateo R (2015) Sublethal Pb exposure produces season-dependent effects on immune response, oxidative balance and investment in carotenoid-based coloration in red-legged partridges. Environ Sci Technol 49:3839–3850

    Article  CAS  Google Scholar 

  • von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition–dependent sexual signals. Proc R Soc Lond B: Biol Sci 266:1–12

  • Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer Science & Business Media, Berlin

  • Warton DI, Wright ST, Wang Y (2012) Distance‐based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101

    Article  Google Scholar 

  • Whelan RJ, Levin TC, Owen JC, Garvin MC (2010) Short-chain carboxylic acids from gray catbird (Dumetella carolinensis) uropygial secretions vary with testosterone levels and photoperiod. Comp Biochem Physiol Part B: Biochem Mol Biol 156:183–188

    Article  CAS  Google Scholar 

  • Whittaker DJ, Rosvall KA, Slowinski SP, Soini HA, Novotny MV, Ketterson ED (2017) Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: implications for the role of the periphery in chemosignaling. J Comparative Physiol A:1–11

  • Whittaker DJ, Rosvall KA, Slowinski SP, Soini HA, Novotny MV, Ketterson ED (2018) Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: Implications for the role of the periphery in chemosignaling. J Comp Physiol A 204:5–15

    Article  CAS  Google Scholar 

  • Whittaker DJ, Soini HA, Atwell JW, Hollars C, Novotny MV, Ketterson ED (2010) Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behav Ecol 21:608–614. https://doi.org/10.1093/beheco/arq033

    Article  Google Scholar 

  • Whittaker DJ, Theis KR (2016) Bacterial communities associated with junco preen glands: Preliminary ramifications for chemical signaling. In: Schulte BA, Goodwin TE, Ferkin MH (eds) Chemical Signals in Vertebrates 13. Springer International Publishing, Cham, pp 105–117 https://doi.org/10.1007/978-3-319-22026-0_8

    Chapter  Google Scholar 

  • Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge University Press, Cambridge

  • Zahavi A, Zahavi A (1999) The handicap principle: a missing piece of Darwin’s puzzle. Oxford University Press, Oxford

  • Zhang J-X, Sun L, Zuo M (2009) Uropygial gland volatiles may code for olfactory information about sex, individual, and species in Bengalese finches Lonchura striata. Curr Zool 55:357–365

    CAS  Google Scholar 

  • Zhang JX, Wei W, Zhang JH, Yang WH (2010) Uropygial gland-secreted alkanols contribute to olfactory sex signals in budgerigars. Chem Senses 35:375–382. https://doi.org/10.1093/chemse/bjq025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the “Mairie de Paris” (Thomas Charachon) for allowing the capture of birds and the Centre de Recherche en Ecologie Experimentale et Predictive (CEREEP) which provided logistic support for the field work of this study. We are very thankful to T. Gayet, S. Pollet, S. Hasnaoui, F. Lorente, S. Perret and B. Decenciere for their help in field work.

Funding

This work was financed by grants from the local government (Ile-de-France: Sustainable Development Network R2DS, No. 2012–11 to JG), and from the “Agence Nationale de la Recherche” (No. ANR-13-PDOC-0002 to SL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Leclaire.

Ethics declarations

Compliance with ethical standards

All experiments were carried out in strict accordance with the recommendations of the “European Convention for the Protection of vertebrate Animals used for Experimental and Other Scientific Purposes” and were conducted under the authorizations of the “Ministère de l’éducation nationale, de l’enseignement supérieur et de la recherche” (authorization N_00093.02) and the “Direction Departementale des Services Veterinaires de Seine-et-Marne” (authorization N_ 77-05).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclaire, S., Chatelain, M., Pessato, A. et al. Pigeon odor varies with experimental exposure to trace metal pollution. Ecotoxicology 28, 76–85 (2019). https://doi.org/10.1007/s10646-018-2001-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-2001-x

Keywords

Navigation