Skip to main content

Advertisement

Log in

A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahams, P. W. (2002). Soils: Their implications to human health. The Science of the Total Environment, 291, 1–32.

    Article  CAS  Google Scholar 

  • Allott, R. W., Hewitt, C., & Kelly, M. R. (1990). The environmental half-lives and mean residence times of contaminants in dust for an urban environment: Barrow-in-furness. Science of the Total Environment, 93, 403–410.

    Article  CAS  Google Scholar 

  • Arditsoglou, A., Petaloti, C., Terzi, C., Sofoniou, M., & Samara, C. (2004). Size distribution of trace elements and polycyclic aromatic hydrocarbons in fly ashes generated in Greek lignite-fired power plants. Science of the Total Environment, 323(1–3), 153–167.

    Article  CAS  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid-phase speciation in street dust of Delhi, India. Environmental Pollution, 123, 95–105.

    Article  CAS  Google Scholar 

  • Barbante, C., Veysseyre, A., Ferrari, C., Van de Velde, K., Morel, C., Capodaglio, G., et al. (2001). Greenland snow evidence of large-scale atmospheric contamination for platinum, palladium and rhodium. Environmental Science and Technology, 35, 835–839.

    Article  CAS  Google Scholar 

  • Beer, T., & Ricci, P. F. (1999). A quantitative risk assessment method based on population and exposure distributions using Australian air quality data. Environment International, 25, 887–898.

    Article  Google Scholar 

  • Begum, B. A., Biswas, S. K., & Hopke, P. K. (2007). Source apportionment of air particulate matter by chemical mass balance (CMB) and comparison with positive matrix factorization (PMF) model. Aerosol and Air Quality Research, 7(4), 446–468.

    CAS  Google Scholar 

  • Berti, W. R., & Jacobs, L. W. (1998). Distribution of trace elements in soil from repeated sewage sludge applications. Journal of Environment Quality, 27, 1280–1286.

    CAS  Google Scholar 

  • Biasioli, M., Grčman, H., Kralj, T., Díaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: A comparison of three European cities. Journal of Environment Quality, 36, 70–79.

    Article  CAS  Google Scholar 

  • Birke, M., & Rauch, U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area. Environmental Geochemistry and Health, 22, 233–248.

    Article  CAS  Google Scholar 

  • Bityukova, L., Shogenova, A., & Birke, M. (2000). Urban geochemistry: A study of element distributions in the soils of Tallinn (Estonia). Environmental Geochemistry and Health, 22, 173–193.

    Article  CAS  Google Scholar 

  • Bollhofer, A., & Rosman, K. J. R. (2000). Isotopic source signatures for atmospheric lead: The southern hemisphere. Geochimica et Cosmochimica Acta, 64, 3251–3262.

    Article  CAS  Google Scholar 

  • Boni, C., Caruso, E., Cereda, E., Lombardo, G., Braga Marcazzan, G. M., & Redaelli, P. (1988). Particulate matter elemental characterization in urban areas: Pollution and source identification. Journal of Aerosol Science, 19, 1271–1274.

    Article  CAS  Google Scholar 

  • Bowman, C. A., Bobrowsky, P. T., & Selinus, O. (2003). Medical geology: new relevance in the earth sciences. Episodes, 270–278.

  • Boyd, H. B., Pedersen, F., Cohr, K. H., Damborg, A., Jakobsen, B. M., Kristensen, P., et al. (1999). Exposure scenarios and guidance values for urban soil pollutants. Regulatory Toxicology and Pharmacology, 30, 197–208.

    Article  CAS  Google Scholar 

  • Buchardt-Boyd, H., Pedersen, F., Cohr, K. H., Damborg, A., Jakobsen, B. M., Kristensen, P., et al. (1999). Exposure scenarios and guidance values for urban soil pollutants. Regulatory Toxicology and Pharmacology, 30, 197–208.

    Article  CAS  Google Scholar 

  • CDC (Centers for Disease Control and Prevention). (2007). Advisory committee on childhood lead poisoning prevention. MMWR Recommendations, 56(RR-80), 1–16.

    Google Scholar 

  • Charlesworth, S. M., Booty, C., & Beasant, J. (2007). Monitoring the atmospheric deposition of particulate-associated urban contaminants, Coventry, UK. In G. M. Morrison & S. Rauch (eds.), Proceedings of the 8th Highway and Urban Environment Symposium Series: Alliance for Global Sustainability Bookseries (Vol. 12, pp. 155–165).

  • Charlesworth, S. M., Everett, M., McCarthy, R., Ordóñez, A., & De Miguel, E. (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 29(5), 563–573.

    Article  CAS  Google Scholar 

  • Charlesworth, S. M., & Foster, I. D. L. (2005). Gamma-emitting radionuclide and metallic elements in urban dusts and sediments, Coventry, UK: Implications of dosages for dispersal and disposal. Mineralogical Magazine, 69(5), 759–767.

    Article  CAS  Google Scholar 

  • Charlesworth, S. M., & Lees, J. A. (1999). Particulate-associated heavy metals in the urban environment: Their transport from source to deposit, Coventry, UK. Chemosphere, 39, 833–848.

    Article  CAS  Google Scholar 

  • Charlesworth, S. M., Ormerod, L. M., & Lees, J. A. (2000). Tracing sediments within urban catchments using heavy metal, mineral magnetic and radionuclide signatures. In I. D. L. Foster (Ed.), Tracers in geomorphology. New York: Wiley.

    Google Scholar 

  • Chattopadhyay, G., Lin, K. C. P., & Feitz, A. J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93, 301–307.

    Article  CAS  Google Scholar 

  • Chen, J., Tan, M., Li, Y., Zhang, Y., Lu, W., Tong, Y., et al. (2005). A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmospheric Environment, 39, 1245–1253.

    Article  CAS  Google Scholar 

  • Choi, J., Fuentes, M., & Reich, B. J. (2009). Spatial–temporal association between fine particulate matter and daily mortality. Computational Statistics & Data Analysis, 53(8), 2989–3000.

    Article  Google Scholar 

  • Chon, H. T., Kim, K. W., & Kim, J. Y. (1995). Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environmental Geochemistry and Health, 17, 139–146.

    Article  CAS  Google Scholar 

  • Cornille, P., Maenhaut, W., & Pacyna, J. M. (1990). Sources and characteristics of the atmospheric aerosol near Damascus, Syria. Atmospheric Environment, 24A, 1083–1093.

    CAS  Google Scholar 

  • Crosby, D. G. (1998). Environ toxicology and chemistry (p. 336). Oxford: Oxford University Press.

    Google Scholar 

  • Dao, L., Morrison, L., & Zhang, C. (2009). Spatial variation of urban soil geochemistry in a roadside sports ground in Galway, Ireland. Science of the Total Environment, 408, 1076–1084.

    Article  CAS  Google Scholar 

  • Davies, D. J. A., Watt, J. M., & Thornton, I. (1987). Lead levels in Birmingham dusts and soils. Science of the Total Environment, 67, 177–185.

    Article  CAS  Google Scholar 

  • De Miguel, E., Charlesworth, S., Ordóñez, A., & Seijas, E. (2005). Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain). Science of the Total Environment, 340, 137–148.

    Article  CAS  Google Scholar 

  • De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513.

    Article  CAS  Google Scholar 

  • De Miguel, E., Jiménez de Grado, M., Llamas, J. F., Martín-Dorado, A., & Mazadiego, L. F. (1998). The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Science of the Total Environment, 215, 113–122.

    Article  Google Scholar 

  • De Miguel, E., Llamas, J. F., Chacón, E., Berg, T., Larssen, S., Røyset, O., et al. (1997). Origin and patterns of distribution of trace elements in street dust. Unleaded petrol and urban lead. Atmospheric Environment, 31, 2733–2740.

    Article  Google Scholar 

  • De Miguel, E., Llamas, J. F., Chacón, E., & Mazadiego, L. F. (1999). Sources and pathways of trace elements in urban environments: a multi-elemental qualitative approach. Science of the Total Environment, 235, 355–357.

    Article  Google Scholar 

  • Defra (Department of Environment, Food and Rural Affairs) and EA (Environment Agency). (2002). Assessment of risks to human health from land contamination: An overview of the development of guideline values and related research. Report CLR7.

  • Dongarrà, G., Sabatino, G., Triscari, M., & Varrica, D. (2003). The effects of anthropogenic particulate emissions on roadway dust and Nerium oleander leaves in Messina (Sicily, Italy). Journal of Environmental Monitoring, 5, 766–773.

    Article  CAS  Google Scholar 

  • Drew, H. M. (1975). Metal-based lubricant composition (p. 332). New Jersey: Noyes Data Corporation.

    Google Scholar 

  • Droppo, I. G., Irvine, K. N., Murphy, T. P., & Jaskot, C. (1998). Fractionated metals in street dust of a mixed land use sewershed, Hamilton, Ontario. Hydrology in a Changing Environment III, 383–394 (British Hydrological Society).

  • Dudka, S., & Miller, W. P. (1999). Permissible concentrations of arsenic and lead in soils based on risk assessment. Water, Air, and Soil pollution, 113, 127–132.

    Article  CAS  Google Scholar 

  • Duggan, M. J., Inskip, M. J., Rundle, S. A., & Moorcroft, J. S. (1985). Lead in playground dust and on the hands of schoolchildren. Science of the Total Environment, 44, 65–79.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N. S. (2007). Sources and characteristics of lead pollution in the urban environment of Guangzhou. The Science of the Total Environment, 385, 182–195.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N. S., & Weiss, A. L. (2008). Use and abuse of Pb-isotope fingerprinting technique and GIS mapping data to assess lead in environmental studies. Environmental Geochemistry and Health, 30, 577–588.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N.S., Willett, K.L., & Khan, I.A. (2010). Determination of total and partially extractable solid-bound element concentrations using collision/reaction cell inductively coupled plasma-mass spectrometry and their significance in environmental studies. Environ Monit Assess. doi: 10.1007/s10661-010-1317-7.

  • Edwards, R. D., Yurkow, E. J., & Lioy, P. J. (1998). Seasonal deposition of housedusts onto household surfaces. Science of the Total Environment, 224, 69–80.

    Article  CAS  Google Scholar 

  • European Committee for Standardization. (1995). EN-71: Safety of toys—part 3: specification for migration of certain elements. British Standard EN 71-3.

  • Evans, E., Ma, M., Kingston, L., Leharne, S., & Chowdhry, B. (1992). The speciation pattern of lead in street dusts and soils in the vicinity of two London schools. Environment International, 18, 153–162.

    Article  CAS  Google Scholar 

  • Farfel, M. R., Orlova, A. O., Lees, P. S. J., et al. (2003). A study of urban housing demolitions as sources of lead in ambient dust: Demolition practices and exterior dust fall. Environmental Health Perspectives, 111, 1228–1234.

    Article  CAS  Google Scholar 

  • Fergusson, J. E., & Kim, D. (1991). Trace elements in street and house dusts: Sources and speciation. Science of the Total Environment, 100, 125–150.

    Article  CAS  Google Scholar 

  • Fergusson, J. E., & Ryan, D. E. (1984). The elemental composition of street dust from large and small urban areas related to city type, source and particle size. Science of the Total Environment, 34, 101–116.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, 4501–4512.

    Article  CAS  Google Scholar 

  • Foster, I. D. L., & Charlesworth, S. M. (1996). Heavy metals in the hydrological cycle: trends and explanation. Hydrological Processes, 10, 227–261.

    Article  Google Scholar 

  • Gatz, D. (1975). Relative contribution of different sources of urban aerosols: application of a new estimation method to multiple sites in Chicago. Atmospheric Environment, 9, 1–18.

    Article  CAS  Google Scholar 

  • Giusquiani, P. L., Gigliotti, G., & Businelli, D. (1992). Mobility of heavy metals in urban waste-amended soils. Journal of Environment Quality, 21, 330–335.

    CAS  Google Scholar 

  • Granero, S., & Domingo, J. L. (2002). Levels of metals in soils of Alcalá de Henares, Spain: human health risks. Environment International, 28, 159–164.

    Article  CAS  Google Scholar 

  • Grzebisz, W., Cieśla, L., Komisarek, J., & Potarzycki, J. (2002). Geochemical assessment of heavy metals pollution of urban soils. Polish Journal of Environmental Studies, 11(5), 493–499.

    CAS  Google Scholar 

  • Hamel, S. C., Buckley, B., & Lioy, P. J. (1998). Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environmental Science and Technology, 32, 358–362.

    Article  CAS  Google Scholar 

  • Han, B., Kong, S., Bai, Z., Du, G., Bi, T., Li, X, Shi, G., & Hu, Y. (2010). Characterization of elemental species in PM2.5 samples collected in four cities of northeast China. Water, Air, & Soil Pollution, 209(1–4), 15–28.

    Article  CAS  Google Scholar 

  • Harrison, P. R., Draftz, R. G., & Murphy, W. H. (1974). Identification and impact of Chicago’s ambient suspended dust. In Proceedings of ‘Atmospheric-Surface Exchange of Particulate and Gaseous Pollutants (1974)’, Richland, Washington, 4–6 Sept. 1974. Energy Research and Development Administration symposium series, CONF-740921 (pp. 557–570). National Technical Information Service, U.S. Department of Commerce.

  • Harrison, R. M., Laxen, D. P. H., & Wilson, S. J. (1981). Chemical associations of lead, cadmium, copper and zinc in street dusts and roadside soils. Environmental Science and Technology, 15(11), 1376–1383.

    Article  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., Pio, C. A., & Castro, L. M. (1997). Comparative receptor modelling study of airborne particulate pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan). Atmospheric Environment, 31, 3309–3321.

    Article  CAS  Google Scholar 

  • Harvey, P. G., Spurgeon, A., Morgan, J., Chance, J., & Moss, E. (1985). A method for assessing hand-to-mouth activity in children as a possible transport route for toxic substances. In: Lekkas, T. D. (ed.). Heavy metals in the environment. International Conference, Athens, 1. CEP Consultants, pp. 436–437.

  • Hemond, H. F., & Solo-Gabriele, H. M. (2004). Children’s exposure to arsenic from CCA-treated wooden decks and playground structures. Risk Analysis, 24, 51–64.

    Article  Google Scholar 

  • Henry, R. C. (1987). Current factor analysis receptor models are ill-posed. Atmospheric Environment, 21, 1815–1827.

    Article  CAS  Google Scholar 

  • Hogervorst, J., Plusquin, M., Vangronsveld, J., Nawrot, T., Cuypers, A., Van Hecke, E., et al. (2007). House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environmental Research, 103(1), 30–37.

    Article  CAS  Google Scholar 

  • Hopke, P. K., Lamb, R. E., & Natusch, D. F. S. (1980). Multielemental characterisation of urban roadway dust. Environmental Science and Technology, 14, 164–172.

    Article  CAS  Google Scholar 

  • Horvath, H. (2008). Conference on visibility, aerosols, and atmospheric optics, Vienna, September 3–6, 2006. Atmospheric Environment, 42(11), 2569–2570. special issue.

    Article  CAS  Google Scholar 

  • ICRCL. (1987). Guidance on the assessment and redevelopment of contaminated land, 2nd Edn. DETR Publications.

  • ICRP. (1991). Recommendations of the international commission on radiological protection. ICRP publication 60. Annals of the ICRP, 21, 1–3.

    Google Scholar 

  • Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247–256.

    Article  CAS  Google Scholar 

  • Jiries, A. G., Hussein, H. H., & Halash, Z. (2001). The quality of water and sediments of street runoff in Amman, Jordan. Hydrological Processes, 15, 815–824.

    Article  Google Scholar 

  • Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P., et al. (2004). Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health, 207, 399–407.

    Article  CAS  Google Scholar 

  • Kasparian, J., Frejafon, E., Rambaldi, P., Yu, J., Vezin, B., Wolf, J. P., et al. (1998). Characterization of urban aerosols using SEM-microscopy, X-ray analysis and lidar measurements. Atmospheric Environment, 32, 2957–2967.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Kim, K. W., Ahn, J. S., Ko, I., & Lee, C. H. (2005). Investigation and risk assessment modelling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environmental Geochemistry and Health, 27, 193–203.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Myung, J. H., Ahn, J. S., & Chon, H. T. (1998). Heavy metal speciation in dusts and stream sediments in the Taejon area, Korea. Journal of Geochemical Exploration, 64, 409–419.

    Article  CAS  Google Scholar 

  • Kowalczyk, G. S., Gordon, G. E., & Rheingrover, S. W. (1982). Identification of atmospheric particulate sources in Washington, D.C., Using chemical element balances. Environmental Science and Technology, 16, 79–90.

    Article  CAS  Google Scholar 

  • Kupiainen, K. (2007). Road dust from pavement wear and traction sanding. Monograph of Boreal Environment Research, 26, Finnish Environment Institute, Helsinki.

  • Laidlaw, M., & Filippelli, G. (2008). Resuspension of urban soils as a persistent source of lead poisoning in children: a review and new directions. Applied Geochemistry, 23, 2021–2039.

    Article  CAS  Google Scholar 

  • Lanphear, B. P., Matte, T. D., Rogers, J., Clickner, R. P., Dietz, B., Bornschein, R. L., et al. (1998). The contribution of lead contaminated house dust and residential soil to children’s blood lead levels. Environmental Research, 79, 51–68.

    Article  CAS  Google Scholar 

  • Lee, J. S., Chon, H. T., & Kim, K. W. (2005). Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environmental Geochemistry and Health, 27, 185–191.

    Article  CAS  Google Scholar 

  • Lee, C. S., Li, X., Shi, W., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.

    Article  CAS  Google Scholar 

  • Leharne, S., Charlesworth, D., & Chowdry, B. (1992). A survey of metal levels in street dusts in an Inner London neighbourhood. Environment International, 18, 263–270.

    Article  CAS  Google Scholar 

  • Li, X. D., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Lin, J. J., & Lee, L. C. (2004). Characterization of the concentration and distribution of urban submicron (PM1) aerosol particles. Atmospheric Environment, 38(3), 469–475.

    Article  CAS  Google Scholar 

  • Lin, J. J., & Tai, H. S. (2001). Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City. Taiwan Atmospheric Environment, 35, 2627–2636.

    Article  CAS  Google Scholar 

  • Lin, H., Wheeler, D., Bell, D., & Wilding, L. (2005). Assessment of soil spatial variability at multiple scales. Ecological Modelling, 182, 271–290.

    Article  Google Scholar 

  • Linge, K. L. (2008). Methods for investigating trace element binding in sediments. Critical Reviews in Environmental Science and Technology, 38, 165–196.

    Article  CAS  Google Scholar 

  • Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health, 42, 1241–1250.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., & Otabbong, E. (2006a). Metals in soils of children’s urban environments in the small northern European city of Uppsala. Science of the Total Environment, 366, 749–759.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006b). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21, 1613–1624.

    Article  CAS  Google Scholar 

  • Llamas, J. F., Chacón, E., & De Miguel, E. (1993). Mapping of trace elements in soils in the province of Madrid. Sampling strategies and analysis of results. In H. J. P. Eijsackers & T. Hamers (Eds.), Integrated soil and sediment research: A basis for proper protection (p. 763). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Loredo, J., Ordóñez, A., Charlesworth, S., & De Miguel, E. (2004). Influence of industry on the geochemical urban environment of Mieres (Spain) and associated health risk. Environmental Geochemistry and Health, 25(3), 307–323.

    Article  Google Scholar 

  • Lux, W. (1986). Schwermetallgehalte und -isoplethen in Böden, subhydrischen Ablagerung und Pflanzen im Südosten Hamburgs. Hamburger Bodenkundliche Arbeiten 5, 249.

  • Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.

    Article  CAS  Google Scholar 

  • Madrid, L., Díaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in park of Seville. Chemosphere, 49, 1301–1308.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: a case study from the city of Palerma (Sicily), Italy. Science of the Total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • Mazzei, F., D’Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., et al. (2008). Characterisation of particulate matter sources in an urban environment. Science of the Total Environment, 401, 81–89.

    Article  CAS  Google Scholar 

  • Mielke, H. W., Gonzales, C. R., Smith, M. K., & Mielke, P. W. (1999). The urban environment and children’s health: soils as an integrator of lead, zinc and cadmium in New Orleans, Louisiana, USA. Environmental Research (Section A), 81, 117–129.

    Article  CAS  Google Scholar 

  • Moldovan, M., Palacios, M. A., Gómez, M. M., Morrison, G., Rauch, S., McLeod, C., et al. (2002a). Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Science of the Total Environment, 296, 199–208.

    Article  CAS  Google Scholar 

  • Moldovan, M., Rauch, S., Gómez, M., Palacios, M. A., & Morrison, G. M. (2002b). Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus aquaticus. Water Research, 35, 4175–4183.

    Article  Google Scholar 

  • Möller, A., Muller, H., Abdullah, A., Abdelgawad, G., & Utermann, J. (2005). Urban soil pollution in Damascus, Syria: Concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma, 124, 63–71.

    Article  CAS  Google Scholar 

  • Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2008). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101, 218–224.

    Article  CAS  Google Scholar 

  • Navas, A., & Machín, J. (2002). Spatial distribution of heavy metals and arsenic in soils of Aragón (northeast Spain): Controlling factors and environmental implications. Applied Geochemistry, 17, 961–973.

    Article  CAS  Google Scholar 

  • Ng, S. L., Chan, L. S., Lam, K. C., & Chan, W. K. (2003). Heavy metals and magnetic properties of playground dust in Hong Kong. Environmental Monitoring and Assessment, 89, 221–232.

    Article  CAS  Google Scholar 

  • Nicholson, K. W. (1988). A review of particle resuspension. Atmospheric Environment, 22, 2639–2651.

    Article  CAS  Google Scholar 

  • Norra, S., Lanka-Panditha, M., Kramar, U., & Stüben, D. (2006). Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany. Applied Geochemistry, 21, 2064–2081.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., & Sips, A. J. A. M. (2003). Development of an in vitro digestion model for estimation of bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44, 281–287.

    Article  CAS  Google Scholar 

  • Ordóñez, A., Loredo, J., De Miguel, E., & Charlesworth, S. M. (2003). Distribution of heavy metals in the street dusts and soils of an industrial city in northern Spain. Archives of Environmental Contamination and Toxicology, 44, 160–170.

    Article  CAS  Google Scholar 

  • Pacyna, J. M. (1983). Trace element emission from anthropogenic sources in Europe. Technical report. 10/82. Norsk Institutt for Luftforskning. Ref. 24781, p. 107.

  • Pacyna, J. M. (1991). Chemical tracers of the origin of arctic air pollution. In: Sturges, W. T. (ed.), Pollution of the arctic atmosphere. Environmental management series (J. Cairns Jr. & R. M. Harrison, Eds.). Amsterdam: Elsevier.

  • Palacios, M. A., Gómez, M., Moldovan, M., & Gómez, B. (2000). Assessment of environmental contamination risk by Pt, Rh and Pd from automobile catalyst. Microchemical Journal, 67, 105–113.

    Article  CAS  Google Scholar 

  • Paterson, E., Sanka, M., & Clark, L. (1996). Urban soils as pollutant sinks—a case study from Aberdeen, Scotland. Applied Geochemistry, 11, 129–131.

    Article  CAS  Google Scholar 

  • Patra, A., Colvile, R., Arnold, S., Bowen, E., Shallcross, D., Martin, D., et al. (2008). On street observations of particulate matter movement and dispersion due to traffic on an urban road. Atmospheric Environment, 42, 3911–3926.

    Article  CAS  Google Scholar 

  • Perez-Santana, S., Pomares Alfonso, M., Villanueva Tagle, M., Peña Icart, M., Brunori, C., & Morabito, R. (2007). Total and partial digestion of sediments for the evaluation of trace element environmental pollution. Chemosphere, 66, 1545–1553.

    Article  CAS  Google Scholar 

  • Pope, C. A., Ezzati, M., & Dockery, W. D. (2009). Fine particulate air pollution and life expectancy in the United States. The New England Journal of Medicine, 360, 376–386.

    Article  CAS  Google Scholar 

  • Pryor, S. C., Barthelmie, R. J., Schoof, J. T., Binkowski, F. S., Delle Monache, L., & Stull, R. (2008). Modeling the impact of sea-spray on particle concentrations in a coastal city. Science of the Total Environment, 391, 132–142.

    Article  CAS  Google Scholar 

  • Rasmussen, P. E., Beauchemin, S., Nugent, M., Dugandzic, R., Lanouette, M., & Chénier, M. (2008). Influence of matrix composition on the bioaccessibility of copper, zinc, and nickel in urban residential dust and soil. Human and Ecological Risk Assessment, 14, 351–371.

    Article  CAS  Google Scholar 

  • Ravindra, K., Bencs, L., & Van Grieten, R. (2004). Platinum group elements in the environment and their health risk. Science of the Total Environment, 318, 1–43.

    Article  CAS  Google Scholar 

  • RIVN (Dutch National Institute for Public Health and the Environment) (2006). How can information on oral bioavailability improve human health risk assessment for lead contaminated soils? RIVM report 711701042.

  • Roscher, E., Liebl, B., Schwegler, U., Schmied, R., & Kerscher, G. (1996). Richtwerte für polyzyklische aromatische Kohlenwasserstoffe im Boden von Kinderspielplätzen—Ableitungskriterien und Empfehlunge. Gesundheitswesen, 58, 470–476.

    CAS  Google Scholar 

  • Rose, A., Juggins, S., Watt, J., & Battarbee, R. (1994). Fuel type characterization of spheroidal carbonaceous particles using surface chemistry. Ambio, 23, 296–299.

    Google Scholar 

  • Ruby, M., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 29, 422–430.

    Article  Google Scholar 

  • Ruby, M., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Rundle, S. A., & Duggan, M. J. (1986). Lead pollution from the external redecoration of old buildings. Science of the Total Environment, 57, 181–190.

    Article  CAS  Google Scholar 

  • Rundle, S. A., Inskip, M. J., Duggan, M. J., & Moorcroft, J. S. (1985). Lead-in-dust on children’s hands. In: Lekkas, T. D. (ed.). Heavy metals in the environment. International Conference, Atenas, CEP Consultants, 1, pp. 457–459.

  • Sadiq, M., & Mian, A. A. (1994). Nickel and vanadium in air particulates at Dharahn (Saudi Arabia) during and after the Kuwait oil fires. Atmospheric Environment, 28, 2249–2253.

    Article  Google Scholar 

  • Sansalone, J., Koran, J., Buchberger, J., & Smithson, G. (1998). Physical characteristics of highway solids transported during rainfall. Journal of Environmental Engineering, 124(5), 427–440.

    Article  CAS  Google Scholar 

  • Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462(1), 59–72.

    Article  CAS  Google Scholar 

  • Schäfer, J., Eckhardt, J. D., Berner, Z. A., & Stüben, D. (1999). Time-dependant increase of traffic-emitted platinum group elements (PGE) in different environmental compartments. Environmental Science and Technology, 33, 3166–3170.

    Article  CAS  Google Scholar 

  • Schroder, J. L., Basta, T., Si, J., Casteel, S. W., Evand, T., & Payton, M. (2003). In vitro gastrointestinal method to estimate relative bioavailable cadmium in contaminated soil. Environmental Science and Technology, 37, 1365–1370.

    Article  CAS  Google Scholar 

  • Schwar, M. J. R., Moorcroft, J. S., Laxen, D. P. H., Thompson, M., & Armorgie, C. (1988). Baseline metal-in-dust concentrations in Greater London. Science of the Total Environment, 68, 25–43.

    Article  CAS  Google Scholar 

  • Serrano-Belles, C., & Leharne, S. (1997). Assessing the potential for road release from road dust and soils. Environmental Geochemistry and Health, 19, 89–100.

    Article  CAS  Google Scholar 

  • Sharaf, E., Abdel-Shakour, A., Amer, M., Abou-Donia, M. A., & Khatab, N. (2008). Evaluation of children’s blood lead level in Cairo, Egypt. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(3), 414–419.

    Google Scholar 

  • Shepherd, K. A., Ellis, P. A., & Rivett, M. O. (2006). Integrated understanding of urban land, groundwater, baseflow and surface-water quality—The City of Birmingham, UK. Science of the Total Environment, 360, 180–195.

    Article  CAS  Google Scholar 

  • Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., et al. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 156(2), 251–260.

    Article  CAS  Google Scholar 

  • Stigliani, W. M. & Anderberg, S. (1991). Industrial metabolism and the Rhine Basin. Options, Sept. 1991.

  • Stilwell, D. E., & Gorny, K. D. (1997). Contamination of soil with copper, chromium, and arsenic under decks built from pressure treated wood. Environmental Contamination and Toxicology B, 58, 22–29.

    Article  CAS  Google Scholar 

  • Sturges, W. T., & Harrison, R. M. (1986). Bromine: Lead ratios in airborne particles from urban and rural sites. Atmospheric Environment, 20, 577–588.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2002). Comparison between non residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Applied Geochemistry, 17, 353–365.

    Article  CAS  Google Scholar 

  • Sutherland, R. A., Day, J. P., & Bussen, J. O. (2002). Lead concentrations, isotope ratios and source apportionment in road deposited sediments, Honolulu, Oahu, Hawaii. Water, Air, and Soil pollution, 142, 165–186.

    Article  Google Scholar 

  • Tam, N. F. Y., & Yao, M. W. Y. (1999). Three digestion methods to determine concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in mangrove sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong. Bulletin of Environmental Contamination and Toxicology, 62, 708–716.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thornton, I. (1991). Metal contamination of soils in urban areas. In P. Bullock & P. J. Gregory (Eds.), Soils in urban environment (pp. 47–75). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Tijhuis, L., Brattli, B., & Sæther, O. M. (2002). A geochemical survey of topsoil in the city of Oslo, Norway. Environmental Geochemistry and Health, 24, 67–94.

    Article  CAS  Google Scholar 

  • Tomza, U. (1984). Trace elements in the atmospheric aerosol at Katowice, Poland. Technical Report. Instituut voor Nucleaire Wetenschappen, Rijksuniversiteit Gent, Gent, Belgium.

  • Tong, S. T. Y. (1998). Indoor and outdoor household dust contamination in Cincinnati, Ohio, USA. Environmental Geochemistry and Health, 20(3), 123–133.

    Article  CAS  Google Scholar 

  • Tong, S. T. Y., & Lam, K. C. (2000). Home sweet home? A case study of household dust contamination in Hong Kong. Science of the Total Environment, 256(2–3), 115–123.

    Article  CAS  Google Scholar 

  • Turner, D. R. (1992). The chemistry of metal pollutants in water. In R. A. Harrison (Ed.), Pollution: causes, effects and controls. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Turner, A., & Simmonds, L. (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Science of the Total Environment, 371, 74–81.

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency). (1994). Method-3051. Microwave-assisted acid digestion of sediments, sludges, soils and oils. Washington, DC.

  • USEPA (US Environmental Protection Agency). (1996). Method-3052. Microwave-assisted acid digestion of siliceous and organically based matrices. Washington, DC.

  • USEPA (US Environmental Protection Agency). (1997). Method-3051A. Microwave-assisted acid digestion of sediment, sludges, soils and oils. Washington, DC.

  • USEPA (US Environmental Protection Agency). (2002). Child-Specific Exposure Factors Handbook. EPA-600-P-00-002B. National Center for Environmental Assessment, US Environmental Protection Agency. Washington, DC, from http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?PrintVersion=Trueanddeid=52047.

  • Van Dingenen, R., Raes, F., Putaud, J. P., Baltensperger, U., Charron, A., Facchini, M. C., et al. (2004). A European aerosol phenomenology—1: Physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2561–2577.

    Article  CAS  Google Scholar 

  • Vermette, S. J., Irvine, K. N., & Drake, J. J. (1991). Temporal variability of the elemental composition in urban street dust. Environmental Monitoring and Assessment, 18, 69–77.

    CAS  Google Scholar 

  • Viana, M., Querol, X., Alastuey, A., Gil, J. I., & Menéndez, M. (2006). Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere, 65, 2411–2418.

    Article  CAS  Google Scholar 

  • Wadge, A., Hutton, M., & Peterson, P. J. (1986). The concentrations and particle size relationships of selected trace elements in fly ashes from U.K. coal-fired power plants and a refuse incinerator. Sci Total Environ, 13–27.

  • Wang, W. H., Wong, M. H., Leharne, S., & Fisher, B. (1998). Fractionation and biotoxicity of heavy metals in urban dusts from Hong Kong and London. Environmental Geochemistry and Health, 20, 185–198.

    Article  CAS  Google Scholar 

  • Wang, S. X., Zhao, Y., Chen, G. C., Wang, F., Aunan, K., & Hao, J. M. (2008). Assessment of population exposure to particulate matter pollution in Chongqing, China. Environmental Pollution, 153, 247–256.

    Article  CAS  Google Scholar 

  • Warren, R. S., & Birch, P. (1987). Heavy metal levels in atmospheric particulates, roadside dust and soil along a major urban highway. Science of the Total Environment, 59, 253–256.

    Article  CAS  Google Scholar 

  • Watt, J., Thornton, I., & Cotter-Howells, J. (1993). Physical evidence suggesting the transfer of soil Pb into young children via hand-to-mouth activity. Applied Geochemistry, Suppl. Issue, 2, 269–272.

    Article  CAS  Google Scholar 

  • Wcislo, E., Ioven, D., Kucharski, R., & Szdzuj, J. (2002). Human health risk assessment case study: an abandoned metal smelter site in Poland. Chemosphere, 47, 507–515.

    Article  CAS  Google Scholar 

  • Widory, D., Roy, S., Le Moullec, Y., Goupil, G., Cocherie, A., & Guerrot, C. (2004). The origin of atmospheric particles in Paris: a view through carbon and lead isotopes. Atmospheric Environment, 38, 953–961.

    Article  CAS  Google Scholar 

  • Wilcke, W., Müller, S., Kanchanakool, N., & Zech, W. (1998). Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils. Geoderma, 86, 211–228.

    Article  CAS  Google Scholar 

  • Williams, M. (2004). Air pollution and policy1952–2002. Science of the Total Environment, 334–335, 15–20.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16.

    Article  CAS  Google Scholar 

  • Wong, J. W. C., & Mak, K. (1997). Heavy metal pollution in children’s playgrounds in Hong Kong and its health implications. Environmental Technology, 18, 109–115.

    Article  CAS  Google Scholar 

  • Wong, E. Y., Shirai, J. H., Garlock, T. J., & Kissel, J. C. (2000). Survey of selected activities relevant to exposures to soils. Bulletin of Environmental Contamination and Toxicology, 65, 443–450.

    Article  CAS  Google Scholar 

  • Yesilonis, I. D., Pouyat, R., & Neerchal, K. (2008). Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines. Environmental Pollution, 156, 723–731.

    Article  CAS  Google Scholar 

  • Yuan, C. S., Cheng, S. W., Hung, C. H., & Yu, T. Y. (2003). Influence of operating parameters on the collection efficiency and size distribution of street dust during street scrubbing. Aerosol and Air Quality Research, 3(1), 75–86.

    Google Scholar 

  • Zhao, P., Feng, Y., Zhu, T., & Wu, J. (2006). Characterizations of resuspended dust in six cities of North China. Atmospheric Environment, 40, 5807–5814.

    Article  CAS  Google Scholar 

  • Zhu, B. Q., Chen, Y. W., & Chang, X. Y. (2003). Application of Pb isotopic mapping to environment evaluation in China. Chemical Speciation and Bioavailability, 14, 49–56.

    CAS  Google Scholar 

  • Zhu, B. Q., Chen, Y. W., & Peng, J. H. (2001). Lead isotope geochemistry of urban environment in the Pearl River Delta. Applied Geochemistry, 16, 409–417.

    Article  CAS  Google Scholar 

  • Zou, B., Wilson, J. G., Zhand, F. B., & Zeng, Y. (2009). Spatially differentiated and source-specific population exposure to ambient urban air pollution. Atmospheric Environment, 43(26), 3981–3988.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ordóñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlesworth, S., De Miguel, E. & Ordóñez, A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ Geochem Health 33, 103–123 (2011). https://doi.org/10.1007/s10653-010-9325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9325-7

Keywords

Navigation