Skip to main content

Advertisement

Log in

Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adopted from Lemtiri et al. (2014)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, M., Rajapakssha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere,99, 19–33.

    CAS  Google Scholar 

  • Alikhani, H. A., Hemati, A., Rashtbari, M., Tiegs, S. D., & Etesami, H. (2017). Enriching vermicompost using P-solubilizing and N-fixing bacteria under different temperature conditions. Communications in Soil Science and Plant Analysis,48(2), 139–147.

    CAS  Google Scholar 

  • Alvarez-Bernal, D., Garcıa-Diaz, E. L., Contreras-Ramos, S. M., & Dendooven, L. (2006). Dissipation of polycyclic aromatic hydrocarbons from soil added with manure or vermicompost. Chemosphere,65(9), 1642–1651.

    CAS  Google Scholar 

  • Ananthavalli, R., Ramadas, V., John Paul, J. A., Karunai Selvi, B., & Karmegam, N. (2019). Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresource Technology,275, 394–401.

    CAS  Google Scholar 

  • Ansari, A. A., Ismail, S. A. (2012). Earthworms and vermiculture biotechnology. In S. Kumar (Ed.), Management of organic waste (pp. 87–96). ISBN: 978-953-307-925-7. http://www.intechopen.com/books/management-of-organic-waste/earthworms-and-vermiculture-biotechnology.

  • Arancon, N. Q., Edwards, C. A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. D. (2008). Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Applied Soil Ecology,39, 91–99.

    Google Scholar 

  • Atiyeh, R. M., Edwards, C. A., Subler, S., & Metzger, J. D. (2001). Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresource Technology,78, 11–20.

    CAS  Google Scholar 

  • Awe, G. O., (2015). Seasonal pattern of soil quality, soil water and thermal regimes and performance of biofuel crops under different management practices. In Doctoral Thesis Post Graduate Program in Soil Science, Brazil: Federal University of Santa Maria.

  • Azizi, A. B., Lim, M. P., Noor, Z. M., & Abdullah, N. (2013). Vermi removal of heavy metal in sewage sludge by utilizing Lumbricus rubellus. Ecotoxicology and Environmental Safety,90, 13–20.

    CAS  Google Scholar 

  • Bagchi, A., Ghosh, B. C., Swain, D. K., & Bera, N. (2015). Organic farming practice for quality improvement of tea and its anti-parkinsonism effect on health defense. Journal of Physical Chemistry and Biophysics,5, 178.

    Google Scholar 

  • Balachandar, R., Baskaran, L., Yuvaraj, A., Thangaraj, R., Subbaiya, R., Ravindran, B., et al. (2020). Enriched pressmud vermicompost production with green manure plants using Eudrilus eugeniae. Bioresource Technology, 299, 122578. https://doi.org/10.1016/j.biortech.2019.122578.

    Article  CAS  Google Scholar 

  • Balachandar, R., Karmegam, N., Saravanan, M., Subbaiya, R., & Gurumoorthy, P. (2018). Synthesis of bioactive compounds from vermicast isolated actinomycetes species and its antimicrobial activity against human pathogenic bacteria. Microbial Pathogenesis,121, 155–165.

    CAS  Google Scholar 

  • Balachandar, R., Karmegam, N., Subbaiya, R., Boomi, P., Karthik, D., & Saravanan, M. (2019). Optimization of culture medium for improved production of antimicrobial compounds by Amycolatopsis sp. -AS9 isolated from vermicasts. Biocatalysis and Agricultural Biotechnology,20, 101186.

    Google Scholar 

  • Banu, J. R., Logakanthi, S., & Vijayalakshmi, G. S. (2001). Biomanagement of paper mill sludge using an indigenous (Lampito mauritii) and two exotic (Eudrilus eugeniae and Eisenia fetida) earthworms. Journal of Environmental Biology,22(3), 181–185.

    CAS  Google Scholar 

  • Benazzouk, S., Djazouli, Z. E., & Lutts, S. (2018). Assessment of the preventive effect of vermicompost on salinity resistance in tomato (Solanum lycopersicum cv. Ailsa Craig). Acta Physiologiae Plantarum,40(6), 121.

    Google Scholar 

  • Bhat, S. A., Singh, J., & Vig, A. P. (2013). Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny. Environmental Science and Pollution Research,20(9), 5975–5982.

    CAS  Google Scholar 

  • Bhat, S. A., Singh, J., & Vig, A. P. (2016). Effect on growth of earthworm and chemical parameters during vermicomposting of pressmud sludge mixed with cattle dung mixture. Procedia Environmental Sciences,35, 425–434.

    CAS  Google Scholar 

  • Bhat, S. A., Singh, S., Singh, J., Bhawana, S. K., & Vig, A. P. (2018). Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology,252, 172–179.

    CAS  Google Scholar 

  • Biruntha, M., Mariappan, P., Karunai Selvi, B., John Paul, J. A., & Karmegam, N. (2019). Vermiremediation of urban and agricultural biomass residues for nutrient recovery and vermifertilizer production. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-019-00899-0.

    Article  Google Scholar 

  • Biruntha, M., Karmegam, N., Archana, J., Karunai Selvi, K., John Paul, J. A., Balamuralikrishnan, B., et al. (2020). Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresource Technology, 297, 122398. https://doi.org/10.1016/j.biortech.2019.122398.

    Article  CAS  Google Scholar 

  • Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., et al. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science,64, 161–182.

    Google Scholar 

  • Bouché, M. B. (1977). Strategies lombriciennes. Ecological Bulletin,25, 122–132.

    Google Scholar 

  • Boyle, P. E., Richardson, M. D., Savin, M. C., Karcher, D. E., & Potter, D. A. (2019). Ecology and management of earthworm casting on sports turf. Pest Management Science,75(8), 2071–2078.

    CAS  Google Scholar 

  • Briones, M. J. I., Barreal, M. E., Harrison, A. C., & Gallego, P. P. (2011). Earthworms and nitrogen applications to improve soil health in an intensively cultivated kiwifruit orchard. Applied Soil Ecology,49, 158–166.

    Google Scholar 

  • Busato, J. G., Papa, G., Canellas, L. P., Adani, F., de Oliveira, A. L., & Leão, T. P. (2016). Phosphatase activity and its relationship with physical and chemical parameters during vermicomposting of filter cake and cattle manure. Journal of the Science and Food Agriculture.,96(4), 1223–1230.

    CAS  Google Scholar 

  • Central Pollution Control Board (CPCB). (2012). Status report on municipal solid waste management. New Delhi: Ministry of Environment and Forest (MoEF).

  • Contreras-Ramos, S. M., Alvarez-Bernal, D., & Dendooven, L. (2006). Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environmental Pollution,141(3), 396–401.

    CAS  Google Scholar 

  • Cunha, A. H., Brasil, E. P., Ferreira, R. B., Vieira, J. A., Araujo, C. S., & Silva, S. M. (2016). Vermicompost of tannery sludge and sewage as conditioners soil with grown tomato. African Journal of Agricultural Research,11(41), 4086–4091.

    CAS  Google Scholar 

  • Czekała, W., Malinska, K., Cáceres, R., Janczak, D., Dach, J., & Lewicki, A. (2016). Co composting of poultry manure mixtures amended with biochar—The effect of biochar on temperature and C–CO2 emission. Bioresource Technology,200, 921–927.

    Google Scholar 

  • Das, S., Deka, P., Goswami, L., Sahariah, B., Hussain, N., & Bhattacharya, S. S. (2016). Vermiremediation of toxic jute mill waste employing Metaphire posthuma. Environmental Science and Pollution Research,23(15), 15418–15431.

    CAS  Google Scholar 

  • de Godoi Pereira, M., de Souza Neta, L. C., Ferreira Fontes, M. P., Souza, A. N., Matos, T. C., de Lima Sachdev, R., dos Santos, A. V., da Guarda Souza, M. O., de Andrade, M. V. A. S., Paulo, G. M. M., Ribeiro, J. N., Ribeiro, A. V. F. N. (2014). An overview of the environmental applicability of vermicompost: from wastewater treatment to the development of sensitive analytical methods. The Scientific World Journal, 2014, 1–14.

    Google Scholar 

  • de Silva, P. M. C. S., Pathiratne, A., Cornelis, A. M., Gestel, V., (2009). Toxicity of Chlorpyrifos, Carbofuran, Mancozeb and their formulations to the earthworm Perionyx excavates. In Thesis 2009–2004 of the department of ecological science, Amsterdam: VU University.

  • Delgado-Moreno, L., & Penã, A. (2009). Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil. Science of the Total Environment,407(5), 1489–1495.

    CAS  Google Scholar 

  • Demetrio, W. C., Dionísio, J. A., & Maceda, A. (2019). Negative effects of earthworms on soil nematodes are dependent on earthworm density, ecological category and experimental conditions. Pedobiologia,76, 150568.

    Google Scholar 

  • Dhar, H., Kumar, S., & Kumar, R. (2017). A review on organic waste to energy systems in India. Bioresource Technology,245, 1229–1237.

    CAS  Google Scholar 

  • Diacono, M., & Montemurro, F. (2015). Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture,5, 221–230.

    Google Scholar 

  • Drumond, M. A., Guimaraes, A. Q., & Pereira da Silva, R. H. (2015). The role of local knowledge and traditional extraction practices in the management of giant earthworms in Brazil. PLoS One,10(4), 0123913.

    Google Scholar 

  • Edwards, C. A., Arancon, N. Q., & Sherman, R. (2011). Vermiculture technology earthworms, organic wastes, and environmental management. London: CRC Press.

    Google Scholar 

  • Elvira, C., Sampedro, L., Benitez, E., & Nogales, R. (1998). Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot scale study. Bioresource Technology,63, 205–211.

    CAS  Google Scholar 

  • Espinosa-Reyes, G., Costilla-Salazar, R., Pérez-Vázquez, F. J., González-Mille, D. J., Flores-Ramírez, R., del Carmen Cuevas-Díaz, M., et al. (2019). DNA damage in earthworms by exposure of persistent organic pollutants in low basin of Coatzacoalcos River, Mexico. Science of the Total Environment,651, 1236–1242.

    CAS  Google Scholar 

  • Etongo, D., Epule, T. E., Djenontin, I. N. S., & Kanninen, M., (2018). Land management in rural Burkina Faso: the role of socio-cultural and institutional factors. In Natural resources forum. Oxford, UK: Blackwell Publishing Ltd.

  • Fernandez-Bayo, J. D., Romero, E., Schnitzler, F., & Burauel, P. (2008). Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts. Environmental Pollution,154(2), 330–337.

    CAS  Google Scholar 

  • Fernández-Gómez, M. J., Nogales, R., Insam, H., Romero, E., & Goberna, M. (2012). Use of DGGE and COMPOCHIP for investigating bacterial communities of various vermicomposts produced from different wastes under dissimilar conditions. Science of the Total Environment,414, 664–671.

    Google Scholar 

  • Garg, V. K., & Kaushik, P. (2005). Vermistabilization of Textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia fetida. Bioresource Technology,96, 1063–1071.

    CAS  Google Scholar 

  • Gomez-Brandon, M., Vela, M., Martínez-toled, M. V., Insam, H., & Domínguez, J. (2015). Effects of compost and vermicompost teas as organic fertilizers. In S. Sinha, K. K. Pant, & S. Bajpai (Eds.), Advances in fertilizer technology: Synthesis (pp. 300–318). USA: Studium Press LLC.

    Google Scholar 

  • Gong, X., Cai, L., Li, S., Scott, X., Chang, S. X., Sun, X., et al. (2018). Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost. Ecotoxicology and Environmental Safety,156, 197–204.

    CAS  Google Scholar 

  • Gopalakrishnan, S., Pande, S., Sharma, M., Humayun, P., Kiran, B. K., & Sandeep, D. (2011). Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Protection,30, 1070–1078.

    CAS  Google Scholar 

  • Goswami, L., Sarkar, S., Mukherjee, S., Das, S., Barman, S., Raul, P., et al. (2014). Vermicomposting of tea factory coal ash: metal accumulation and metallothionein response in Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technology,166, 96–102.

    CAS  Google Scholar 

  • Grdiša, M., Gršić, K., & Grdiša, M. D. (2013). Earthworms- role in soil fertility to the use in medicine and as a food. Invertebrate Survival Journal,10(1), 38–45.

    Google Scholar 

  • Groffman, P. M., Fahey, T. J., Fisk, M. C., Yavitt, J. B., Sherman, R. E., Bohlen, P. J., et al. (2015). Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biology and Biochemistry,87, 51–58.

    CAS  Google Scholar 

  • Gubbels, P., & Brescia, S. (2017). West Africa context: Challenges facing family farmers in the Sahel. In S. Brescia (Ed.), Fertile ground: Scaling agroecology from the ground Up (pp. 105–112). Oakland, CA: Institute for Food and Development Policy.

    Google Scholar 

  • Gupta, S. A. (2016). Mainstreaming citywide sanitation-opportunities and challenges for excreta management vermi-filtration for faecal waste treatment. New Delhi: Centre for Science and Environment.

    Google Scholar 

  • Gurav, M. V., & Pathade, G. R. (2011). Production of vermicompost from temple waste (Nirmalya): A case study. Universal Journal of Environmental Research and Technology,1(2), 182–192.

    CAS  Google Scholar 

  • Gutiérrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A. M., Nafate, C. C., Abud-Archila, M., Llaven, M. A. O., et al. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology,98(15), 2781–2786.

    Google Scholar 

  • Hait, S., & Tare, V. (2012). Transformation and availability of nutrients and heavy metals during integrated composting–vermicomposting of sewage sludges. Ecotoxicology and Environmental Safety,79, 214–224.

    CAS  Google Scholar 

  • Hanc, A., & Chadimova, Z. (2014). Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresource Technology,168, 240–244.

    CAS  Google Scholar 

  • Hanc, A., & Dreslova, M. (2016). Effect of composting and vermicomposting on properties of particle size fractions. Bioresource Technology,217, 186–189.

    CAS  Google Scholar 

  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. Urban development series; knowledge Papers No. 15. World Bank: Washington, DC. https://openknowledge.worldbank.org/handle/10986/17388.

  • Huang, K., Xia, H., Li, F., Wei, Y., Cui, G., Fu, X., et al. (2016). Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes. Environmental Science and Pollution Research,23(13), 13569–13575.

    CAS  Google Scholar 

  • Hussain, N., Abbasi, T., & Abbasi, S. A. (2018). Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta. Environmental Science and Pollution Research,25(5), 4989–5002.

    CAS  Google Scholar 

  • Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resource Conservation and Recycling,128, 110–117.

    Google Scholar 

  • Jayakumar, M., Sivakami, T., Ambika, D., & Karmegam, N. (2011). Effect of turkey litter (Meleagris gallopavo L.) vermicompost on growth and yield characteristics of paddy, Oryza sativa (ADT-37). African Journal of Biotechnology,10(68), 15295–15304.

    CAS  Google Scholar 

  • John Paul, J. A., Karmegam, N., & Daniel, T. (2011). Municipal solid waste (MSW) vermicomposting with an epigeic earthworm, Perionyx ceylanensis Mich. Bioresource Technology,102(12), 6769–6773.

    CAS  Google Scholar 

  • Jordão, C. P., Braganca, R., Fernandes, A., de Lima, Ribeiro K., de Souza, Nascimento B., & de Barros, P. M. (2009). Zn(II) adsorption from synthetic solution and kaolin wastewater onto vermicompost. Journal of Hazardous Materials,162, 804–811.

    Google Scholar 

  • Jordão, C. P., Pereira, W. L., Carari, D. M., Fernande, R. B. A., De Almeida, R. M., & Fontes, M. P. F. (2011). Adsorption from Brazilian soils of Cu (II) and Cd (II) using cattle manure vermicompost. International Journal of Environmental Studies,68(5), 719–736.

    Google Scholar 

  • Julka, J. M. (1993). Earthworm resources of India and their utilization in vermiculture. Earthworm Resources and Vermiculture (pp. 51–56). Calcutta: Zoological Survey of India.

    Google Scholar 

  • Jusselme, M. D., Miambi, E., Lebeau, T., & Rouland-Lefevre, C. (2015). Role of earthworms on phytoremediation of heavy metal-polluted soils. In A. Varma (Ed.), Heavy metal contamination of soils. Soil biology (Vol. 44, pp. 279–298). Switzerland: Springer International Publishing.

    Google Scholar 

  • Kale, R. D., & Karmegam, N. (2010). The role of earthworms in tropics with emphasis on Indian ecosystems. Applied Environmental Soil Science,414356, 1–16.

    Google Scholar 

  • Karmegam, N., & Daniel, T. (2008). Effect of vermicompost and chemical fertilizer on growth and yield of hyacinth bean, Lablab purpureus (L.) Sweet. Dynamic Soil, Dynamic Plant,2(2), 77–81.

    Google Scholar 

  • Karmegam, N., & Daniel, T. (2009a). Growth, reproductive biology and life cycle of the vermicomposting earthworm, Perionyx ceylanensis Mich. (Oligochaeta: Megascolecidae). Bioresource Technology,100(20), 4790–4796.

    CAS  Google Scholar 

  • Karmegam, N., & Daniel, T. (2009b). Investigating efficiency of Lampito mauritii (Kinberg) and Perionyx ceylanensis Michaelsen for vermicomposting of different types of organic substrates. The Environmentalist,29(3), 287–300.

    Google Scholar 

  • Karmegam, N., & Daniel, T. (2009c). Effect of application of vermicasts as layering media for an ornamental plant Codiaeum variegatum (L.) Bl. Dynamic Soil, Dynamic Plant,3, 100–104.

    Google Scholar 

  • Karmegam, N., Vijayan, P., Prakash, M., & John Paul, J. A. (2019). Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. Journal of Cleaner Production,228, 718–728.

    CAS  Google Scholar 

  • Karthikeyan, P., Sathiya, G., & Kavitha, D. (2015). An eco-biotechnological approach for recycling of different solid organic wastes into useful products-A comparative study. International Journal of Modern Research and Reviews,3(3), 622–626.

    Google Scholar 

  • Kaushik, P., & Garg, V. K. (2003). Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia fetida. Bioresource Technology,90(3), 311–316.

    CAS  Google Scholar 

  • Khan, M. H., Meghvansi, M. K., Gupta, R., Veer, V., Singh, L., & Kalita, M. C. (2014). Foliar spray with vermiwash modifies the arbuscular mycorrhizal dependency and nutrient stoichiometry of bhut jolokia (Capsicum assamicum). PLoS One,3, 92318.

    Google Scholar 

  • Khan, V. M., Manohar, R. S., & Verma, H. P. (2015). Effect of vermicompost and biofertilizer on symbiotic efficiency and yield of cowpea in arid zone of Rajasthan. Asian Journal of Biological Sciences,10(1), 113–115.

    Google Scholar 

  • Khwairakpam, M., & Bhargava, R. (2009). Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresource Technology,100, 5846–5852.

    CAS  Google Scholar 

  • Kumar, T., Bhargava, R., Prasad, K. S. H., & Pruthi, V. (2015). Evaluation of vermifiltration process using natural ingredients for effective wastewater treatment. Ecological Engineering,75, 370–377.

    Google Scholar 

  • Kumar, V., & Singh, K. P. (2001). Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresource Technology,76, 173–175.

    CAS  Google Scholar 

  • Lalander, C. H., Komakech, A. J., & Vinneras, B. (2015). Vermicomposting as manure management strategy for urban small-holder animal farms—Kampala case study. Waste Management,39, 96–103.

    Google Scholar 

  • Lazcano, C., Revilla, P., Malvar, R. A., & Domínguez, J. (2011). Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost. Journal of the Science of Food and Agriculture,91, 1244–1253.

    CAS  Google Scholar 

  • Lee, L. H., Wu, T. Y., Shak, K. P., Lim, S. L., Ng, K. Y., Nguyen, M. N., et al. (2018). Sustainable approach to biotransform industrial sludge into organic fertilizer via vermicomposting: A mini-review. Journal of Chemical Technology and Biotechnology,93(4), 925–935.

    CAS  Google Scholar 

  • Lemtiri, A., Colinet, G., Alabi, T., Cluzeau, D., Zirbes, L., Haubruge, E., et al. (2014). Impacts of earthworms on soil components and dynamics: A review. Biotechnology, Agronomy and Society and Environment,18(1), 121–133.

    CAS  Google Scholar 

  • Li, Y. C., Li, Z. W., Lin, W. W., Jiang, Y. H., Weng, B. Q., & Lin, W. X. (2018). Effects of biochar and sheep manure on rhizospheric soilmicrobial community in continuous ratooning tea orchards. Chinese Journal of Applied Ecology,29, 1273–1282.

    Google Scholar 

  • Lim, P. N., Wu, T. Y., Sim, E. Y. S., & Lim, S. L. (2011). The potential reuse of soybean husk as feedstock of Eudrilus eugeniae in vermicomposting. Journal of the Science of Food and Agriculture,91, 2637–2642.

    CAS  Google Scholar 

  • Lim, S. L., Wu, T. Y., & Clarke, C. (2014). Treatment and biotransformation of highly polluted agro-industrial wastewater from palm oil mill into vermicompost using earthworms. Journal of the Science of Food and Agriculture,62(3), 691–698.

    CAS  Google Scholar 

  • Lim, S. L., Wu, T. Y., Lim, P. N., & Shak, K. P. Y. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture,95, 1143–1156.

    CAS  Google Scholar 

  • Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., & Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One,14(5), e0217018.

    CAS  Google Scholar 

  • Lin, Z., Bai, J., Zhen, Z., Lao, S., Li, W., Wu, Z., et al. (2016). Enhancing pentachlorophenol degradation by vermicomposting associated bioremediation. Ecological Engineering,87, 288–294.

    Google Scholar 

  • Liu, M., Wang, C., Wang, F., & Xie, Y. (2019). Vermicompost and humic fertilizer improve coastal saline soil by regulating soil aggregates and the bacterial community. Archives of Agronomy and Soil Science,65(3), 281–293.

    CAS  Google Scholar 

  • Lourenco, N., & Nunes, L. M. (2017). Optimization of a vermifiltration process for treating urban wastewater. Ecological Engineering,100, 138–146.

    Google Scholar 

  • Lubbers, I. M., Van Groenigen, K. J., Fonte, S. J., Six, J., Brussaard, L., & Van Groenigen, J. W. (2013). Greenhouse-gas emissions from soils increased by earthworms. Nature Climate Change,3(3), 187.

    CAS  Google Scholar 

  • Lv, B., Xing, M., & Yang, J. (2016). Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresource Technology,209, 397–401.

    CAS  Google Scholar 

  • Lv, B., Zhang, D., Cui, Y., & Yin, F. (2018). Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresource Technology,268, 408–414.

    CAS  Google Scholar 

  • Mahanta, K., Jha, D. K., Rajkhowa, D. J., & Kumar, M. (2012). Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biological Agriculture and Horticulture.,28(4), 241–250.

    Google Scholar 

  • Malinska, K., Golanska, M., Caceres, R., Rorat, A., Weisser, P., & Slezak, E. (2017). Biochar amendment for integrated composting and vermicomposting of sewage sludge—The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresource Technology,225, 206–214.

    CAS  Google Scholar 

  • Malińska, K., Zabochnicka-Świątek, M., Cáceres, R., & Marfà, O. (2016). The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecological Engineering,90, 35–41.

    Google Scholar 

  • Manivannan, S., Balamurugan, M., Parthasarathi, K., Gunasekaran, G., & Ranganathan, L. S. (2009). Effect of vermicompost on soil fertility and crop productivity—Beans (Phaseolus vulgaris). Journal of Environmental Biology,30, 275–281.

    CAS  Google Scholar 

  • Manyuchi, M. M., Mbohwa, C., & Muzenda, E. (2018). Biological treatment of distillery wastewater by application of the vermifiltration technology. South African Journal of Chemical Engineering,25, 74–78.

    Google Scholar 

  • Mary, L. C. L., Sujatha, R., Chozhaa, A. J., & Navas, P. M. A. (2015). Influence of organic manures (biofertilizers) on soil microbial population in the rhizosphere of mulberry (Morus indica L.). International Journal of Applied Science and Biotechnology,3(1), 61–66.

    Google Scholar 

  • Masciandaro, G., Macci, C., Doni, S., & Ceccanti, B. (2010). Use of earthworms (Eisenia fetida) to reduce phytotoxicity and promote humification of pre-composted olive oil mill wastewater. Journal of the Science of Food and Agriculture,90, 1879–1885.

    CAS  Google Scholar 

  • Mashauri, D. A., & Senzia, M. A. (2002). Reuse of nutrients from ecological sanitation toilets as a source of fertiliser. Dar es Salaam: Water Resources Engineering Department.

    Google Scholar 

  • Mengistu, T., Gebrekidan, H., Kibret, K., Woldetsadik, K., Shimelis, B., & Yadav, H. (2017). Comparative effectiveness of different composting methods on the stabilization, maturation and sanitization of municipal organic solid wastes and dried faecal sludge mixtures. Environmental Systems Research,6, 5.

    Google Scholar 

  • Mkhinini, M., Boughattas, I., Bousserhine, N., & Banni, M. (2019). Biochemical and transcriptomic response of earthworms Eisenia andrei exposed to soils irrigated with treated wastewater. Environmental Science and Pollution Research,26(3), 2851–2863.

    CAS  Google Scholar 

  • Mondal, T., Datta, J. K., & Mondal, N. K. (2015). An alternative eco-friendly approach for sustainable crop production with the use of indigenous inputs under old alluvial soil zone of Burdwan, West Bengal, India. Archives of Agronomy and Soil Science,61(1), 55–72.

    Google Scholar 

  • Mu, J., Li, X., Jiao, J., Ji, G., Wu, J., Hu, F., et al. (2017). Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biological Control,112, 49–54.

    CAS  Google Scholar 

  • Munroe, G. (2007). Manual of on-farm vermicomposting and vermiculture (p. 39). Nova Scotia: Organic Agriculture Centre of Canada.

    Google Scholar 

  • Mupambwa, H. A., Ravindran, B., & Mnkeni, P. N. (2016). Potential of effective micro-organisms and Eisenia fetida in enhancing vermi-degradation and nutrient release of fly ash incorporated into cow dung–paper waste mixture. Waste Management,48, 165–173.

    CAS  Google Scholar 

  • Ngo, P.-T., Rumpel, C., Ngo, Q.-A., Alexis, M., Vargas, G. V., de la Gil, M. L. M., et al. (2013). Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource Technology,148, 401–407.

    CAS  Google Scholar 

  • Ngone, M. H., Koottatepa, T., Fakkaewa, K., & Polprasert, C. (2018). Assessment of nutrient recovery, air emission and farmers perceptions of indigenous mound burning practice using animal and human wastes in Myanmar. Agriculture, Ecosystems and Environment,261, 54–61.

    Google Scholar 

  • Nogales, R., Elvira, C., Benitez, E., Thompson, R., & Gomez, M. (1999). Feasibility of vermicomposting dairy biosolids using a modified system to avoid earthworm mortality. Journal of Environmental Science and Health B,34, 151–169.

    CAS  Google Scholar 

  • Oinam, S. S. (2008). Traditional night-soil composting continues to bring benefits. LEISA Magazine,24(2), 25–27.

    Google Scholar 

  • Olivares, F. L., Aguiar, N. O., Rosa, R. C. C., & Canellas, L. P. (2015). Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Scientia Horticulturae,183, 100–108.

    Google Scholar 

  • Oo, A. N., Iwai, C. B., & Saenjan, P. (2013). Soil properties and maize growth in saline and non-saline soils using cassava–industrial waste compost and vermicompost with or without earthworms. Land Degradation and Development,26(3), 300–310.

    Google Scholar 

  • Oroka, F. O. (2015). Influence of municipal solid waste vermicompost on soil organic carbon stock and yield of okra (Abelmoschus esculentus Moench) in a tropical agroecosystem. Journal of Environment and Earth Science,5(12), 61–66.

    Google Scholar 

  • Padmavathiamma, P. K., Li, L. Y., & Kumari, U. R. (2008). An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology,99(6), 1672–1681.

    CAS  Google Scholar 

  • Pattnaik, S., & Reddy, M. V. (2010). Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resources, Conservation and Recycling,54(8), 512–520.

    Google Scholar 

  • Pechenik, J. A. (2009). Biology of the invertebrates (5th ed.). Boston: McGraw-Hill Higher Education.

    Google Scholar 

  • Pimentel, D., & Burgess, M. (2013). Soil erosion threatens food production. Agriculture,3(3), 443–463.

    Google Scholar 

  • Prakash, M., & Karmegam, N. (2010). Vermistabilization of pressmud using Perionyx ceylanensis Mich. Bioresource Technology,101(21), 8464–8468.

    CAS  Google Scholar 

  • Quaik, S., & Ibrahim, M. H. (2013). A review on potential of vermicomposting derived liquids in agriculture use. International Journal of Science and Research,3(3), 1–7.

    Google Scholar 

  • Rajasekar, K., & Karmegam, N. (2010). Earthworm casts as an alternate carrier material for biofertilizers: Assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Scientia Horticulturae,124(2), 286–289.

    Google Scholar 

  • Rajiv, P., Rajeshwari, S., & Venckatesh, R. (2013). Fourier transform-infrared spectroscopy and Gas chromatography–mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy,116, 642–645.

    CAS  Google Scholar 

  • Rajya Laxmi, P., Saravanan, S., & Naik, M. L. (2015). Effect of organic manures and inorganic fertilizers on plant growth, yield, fruit quality and shelf life of tomato (Solanum lycopersicon L.) c.v. PKM-1. International Journal of Agricultural Science and Research,5(2), 7–12.

    Google Scholar 

  • Rao, K. R. (2002). Induced host plant resistance in the management of sucking insect pests of groundnut. Annals of Plant Protection Sciences,10, 45–50.

    Google Scholar 

  • Rao, M. S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., et al. (2017). Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae,218, 56–62.

    Google Scholar 

  • Ravindran, B., Contreras-Ramos, S. M., & Sekaran, G. (2015). Changes in earthworm gut associated enzymes and microbial diversity on the treatment of fermented tannery waste using epigeic earthworm Eudrilus eugeniae. Ecological Engineering,74, 394–401.

    Google Scholar 

  • Ravindran, B., & Mnkeni, P. N. (2017). Identification and fate of antibiotic residue degradation during composting and vermicomposting of chicken manure. International Journal of Environmental Science and Technology,14(2), 263–270.

    CAS  Google Scholar 

  • Ravindran, B., Wong, J. W., Selvam, A., & Sekaran, G. (2016). Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresource Technology,217, 200–204.

    CAS  Google Scholar 

  • Rekha, G. S., Kaleena, P. K., Elumalai, D., Srikumaran, M. P., & Maheswari, V. N. (2018). Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. International Journal of Recycling of Organic Waste in Agriculture.,7(1), 83–88.

    Google Scholar 

  • Romero-Freire, A., Peinado, F. J. M., Ortiz, M. D., & Van Gestel, C. A. M. (2015). Influence of soil properties on the bioaccumulation and effects of arsenic in the earthworm Eisenia andrei. Environmental Science and Pollution Research,22(19), 15016–15028.

    CAS  Google Scholar 

  • Roy, S., Arunachalam, K., Dutta, B. K., & Arunachalam, A. (2010). Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Applied Soil Ecology,45, 78–84.

    Google Scholar 

  • Sahariah, B., Goswami, L., Ki-Hyun, K., Bhattacharyya, P., & Bhattacharya, S. S. (2015). Metal remediation and biodegradation potential of earthworm species on municipal solid waste: A parallel analysis between Metaphire posthuma and Eisenia fetida. Bioresource Technology,180, 230–236.

    CAS  Google Scholar 

  • Samal, K., Dash, R. R., & Bhunia, P. (2018). Design and development of a hybrid macrophyte assisted vermifilter for the treatment of dairy wastewater: A statistical and kinetic modelling approach. Science of the Total Environment,645, 156–169.

    CAS  Google Scholar 

  • Sanchez-Hernandez, J. C. (2019). Bioremediation of pesticide-contaminated soils by using earthworms. Bioremediation of Agricultural Soils (pp. 165–192). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sarma, B., Farooq, M., Gogoi, N., Borkotoki, B., Kataki, R., & Garg, A. (2018). Soil organic carbon dynamics in wheat—Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. Journal of Cleaner Production,201, 471–480.

    CAS  Google Scholar 

  • Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E., & Klirs, C. (2019). Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report.

  • Sen, B., & Chandra, T. S. (2007). Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes. Bioresource Technology,98, 1680–1683.

    CAS  Google Scholar 

  • Shah, R. U., Abid, M., Qayyum, M. F., & Ullah, R. (2015). Dynamics of chemical changes through production of various composts/vermicompost such as farm manure and sugar industry wastes. International Journal Recycling of Organic Waste in Agriculture,4(1), 39–51.

    Google Scholar 

  • Sharma, K., & Garg, V. K. (2018). Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresource Technology,250, 708–715.

    CAS  Google Scholar 

  • Sheikh, M. A., Dwivedi, P., & Dwivedi, H. S. (2015). Impact of chemical fertilizer and organic manure on the germination and growth of soybean (Glycine max L.). Advances in Life Science and Technology,31, 73–77.

    Google Scholar 

  • Shi, Z., Tang, Z., & Wang, C. (2019). Effect of phenanthrene on the physicochemical properties of earthworm casts in soil. Ecotoxicology, Environmental and Safety,168, 348–355.

    CAS  Google Scholar 

  • Singh, A., & Singh, G. S. (2017). Vermicomposting: A sustainable tool for environmental equilibria. Environmental Quality and Management,27, 23–40.

    Google Scholar 

  • Singh, A., & Singh, G. S. (2019). Is earthworm a protagonist or an antagonist in greenhouse gas emissions (GHG) from the soil? International Journal of Environmental Science and Technology,16, 1145–1158.

    CAS  Google Scholar 

  • Singh, J., Kaur, A., Vig, A. P., & Rup, P. J. (2010a). Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotoxicology, Environmental and Safety,73, 430–435.

    CAS  Google Scholar 

  • Singh, R., Bhunia, P., & Dash, R. R. (2017). A mechanistic review on vermifiltration of wastewater: Design, operation and performance. Journal of Environmental Management,197, 656–672.

    CAS  Google Scholar 

  • Singh, R., Gupta, R. K., & Patil, R. T. (2010b). Sequential foliar application of vermicompost leachates improves marketable fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Scientia Horticulturae,124(1), 34–39.

    CAS  Google Scholar 

  • Singh, R., Sharma, R. R., Kumar, S., Gupta, R. K., & Patil, R. T. (2008). Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Bioresource Technology,99, 8507–8511.

    CAS  Google Scholar 

  • Sinha, R. K., Bharambe, G., & Chaudhari, U. (2008). Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. The Environmentalist,28, 409–420.

    Google Scholar 

  • Sinha, R. K., & Herat, S. (2012). Organic farming: Producing chemical-free, nutritive and protective food for the society while also protecting the farm soil by earthworms and vermicompost—reviving the dreams of Sir Charles Darwin. Agricultural Science Research Journal,2(5), 217–239.

    Google Scholar 

  • Sinha, R. K., Soni, B. K., Agarwal, S., Shankar, B., & Hahn, G. (2013). Vermiculture for organic horticulture: producing chemical free, nutritive and health protective foods by earthworms. Agricultural Science,1(1), 17–44.

    Google Scholar 

  • Song, X., Liu, M., Wu, D., Griffiths, B. S., Jiao, J., Li, H., et al. (2015). Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology,89, 25–34.

    Google Scholar 

  • Song, X., Liu, M., Wu, D., Qi, L., Ye, C., Jiao, J., et al. (2014). Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Management,34(11), 1977–1983.

    CAS  Google Scholar 

  • Sonia, V., Felix, S., & Antony, C. (2016). Comparative study of growth and reproduction of earthworm Eudrilus eugeniae in different organic substrate. International Journal of Applied Sciences,4(1), 2455–4499.

    Google Scholar 

  • Soobhany, N., Gunasee, S., Rago, Y. P., Joyram, H., Raghoo, P., Mohee, R., et al. (2017). Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity. Bioresource Technology,236, 11–19.

    CAS  Google Scholar 

  • Šrut, M., Menke, S., Höckner, M., & Sommer, S. (2019). Earthworms and cadmium–Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicology and Environmental Safety,171, 843–853.

    Google Scholar 

  • Sudhir, H. S., & Gururaja, K. V. (2012). Population crunch in India: is it urban or still rural? Current Science,103(1), 37–40.

    Google Scholar 

  • Suleiman, H., Rorat, A., Grobelak, A., Grosser, A., Milczarek, M., Plytycz, B., et al. (2017). Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta. Bioresource Technology,241, 103–112.

    CAS  Google Scholar 

  • Suthar, S. (2006). Potential utilization of Guar gum industrial waste in vermicompost production. Bioresource Technology,97, 2474–2477.

    CAS  Google Scholar 

  • Swarnam, T. P., Velmurugan, A., Pandey, S. K., & Roy, S. D. (2016). Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology. Bioresource Technology,207, 76–84.

    CAS  Google Scholar 

  • Taeporamaysamai, O., & Ratanatamskul, C. (2016). Co-composting of various organic substrates from municipal solid waste using an on-site prototype vermicomposting reactor. International Biodeterioration and Biodegradation,113, 357–366.

    CAS  Google Scholar 

  • Truong, H. D., Wang, C. H., & Kien, T. T. (2018). Effect of vermicompost in media on growth, yield and fruit quality of cherry tomato (Lycopersicon esculentun Mill.) under net house conditions. Compost Science and Utilization.,26(1), 52–58.

    CAS  Google Scholar 

  • UN DESA. (2017). World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100, United Nations Department of Economic and Social Affairs: New York. https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html. Retrieved on 14 October 2019.

  • Valdez-Perez, M. A., Fernández-Luqueno, F., Franco-Hernandez, O., Cotera, L. B. F., & Dendooven, L. (2011). Cultivation of beans (Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost of inorganic amended soil. Scientia Horticulturae,128, 380–387.

    CAS  Google Scholar 

  • Venkatesham, G., & Reddy, K. S. S. S. N. (2009). Vermicomposting—A sustainable technology (Case study of Nalgonda, Andhra Pradesh). Journal of Industrial Pollution Control,25(1), 7–11.

    CAS  Google Scholar 

  • Wahi, R., Bidin, E. R., Asif, N. M. M., Hamizat, N. A. N., Ngaini, Z., Omar, R., et al. (2019). Nutrient availability in sago bark and empty fruit bunch composts for the growth of water spinach and green mustard. Environmental Science and Pollution Research,26(22), 22246–22253.

    Google Scholar 

  • Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D., et al. (2018a). Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of Environmental Sciences,63, 156–173.

    Google Scholar 

  • Wang, Y., Xub, Y. A., Li, D., Tang, B. C., Mana, S. L., Jia, Y. F., et al. (2018b). Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Science of the Total Environment,621, 1057–1065.

    CAS  Google Scholar 

  • Wonga, W. S., Tan, S. N., Gec, L., Chend, X., & Yonga, J. W. H. (2015). The importance of phytohormones and microbes in biofertilizers: A critical review. In D. K. Maheshwari (Ed.), Bacterial Metabolites in Sustainable Agroecosystem (pp. 1–55). Switzerland: Springer International Publishing AG.

    Google Scholar 

  • World Health Organization. (2006). Guidelines for the safe use of wastewater, excreta and greywater. Volume IV: Excreta and greywater use in agriculture. Geneva, Switzerland.

  • Xie, D., Wu, W., Hao, X., Jiang, D., Li, X., & Bai, L. (2016). Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida. Environmental Science and Pollution Research,23(8), 7767–7775.

    CAS  Google Scholar 

  • Yadav, A., & Garg, V. K. (2011). Recycling of organic wastes by employing Eisenia fetida. Bioresource Technology,102(3), 2874–2880.

    CAS  Google Scholar 

  • Yadav, A., & Garg, V. K. (2019). Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresource Technology,274, 512–517.

    CAS  Google Scholar 

  • Yadav, K. D., Tare, V., & Ahammed, M. M. (2010). Vermicomposting of source-separated human faeces for nutrient recycling. Waste Management,30, 50–56.

    CAS  Google Scholar 

  • Yang, C. W., Tang, S. L., Chen, L. Y., & Chang, B. V. (2014). Removal of nonylphenol by earthworms and bacterial community change. International Biodeterioration and Biodegradation,96, 9–17.

    Google Scholar 

  • Yuvaraj, A., Karmegam, N., & Thangaraj, R. (2018). Vermistabilization of paper mill sludge by an epigeic earthworm Perionyx excavatus: Mitigation strategies for sustainable environmental management. Ecological Engineering,120, 187–197.

    Google Scholar 

  • Yuvaraj, A., Karmegam, N., Tripathi, S., Kannan, S., & Thangaraj, R. (2020). Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: Bioaccumulation of heavy metals and metallothionein production. Journal of Environmental Management,254, 109813. https://doi.org/10.1016/j.jenvman.2019.109813.

    Article  CAS  Google Scholar 

  • Zhao, L., Wang, Y., Yang, J., Xing, M., Li, X., Yi, D., et al. (2010). Earthworm microorganism interactions: a strategy to stabilize domestic wastewater sludge. Waters Research,44, 2572–2582.

    CAS  Google Scholar 

  • Zuo, Y., Zhang, J., Zhao, R., Dai, H., & Zhang, Z. (2018). Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Scientia Horticulturae,233, 132–140.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea (No. 20163010092250). We are also highly thankful to the Director and Dean of the Faculty of Environment and Sustainable Development and Banaras Hindu University for the provision of research funding. The authors are also grateful for the research collaboration among institutes and universities. The authors are thankful to RUSA scheme Phase 2.0 grant [F-24-51/2014–U, Policy (TNMulti-Gen), Dept of Edn, Govt. of India. Dt. 09.10.2018] for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gopal Shankar Singh or Balasubramani Ravindran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Karmegam, N., Singh, G.S. et al. Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt. Environ Geochem Health 42, 1617–1642 (2020). https://doi.org/10.1007/s10653-019-00510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00510-4

Keywords

Navigation