Skip to main content

Advertisement

Log in

Potentially toxic elements concentrations in schoolyard soils in the city of Coronel, Chile

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Urban areas are constantly growing. By 2050, the urban world population, it is predicted to reach 6 billion. Being component of cities environment, urban soils have elevated levels of potentially toxic elements from anthropogenic action. The aims of this study are (1) to establish background levels of potentially toxic element in soils in the city of Coronel and (2) to assess the pollution and identify its origin. Samples (129 in total) were collected in Coronel, from 43 sites in schoolyards. Three samples were taken at each site: 0–10 cm, 10–20 cm and 150 cm depth. Principal component analysis (PCA), cluster analysis (CA) and depth ratios were applied to distinguish the origin of the contamination. The geoaccumulation index, contamination factor and the integrated pollution index were used to estimate the pollution. The median concentration of the chemical elements in 0–10 cm depth was Ba 38 mg kg−1; Co 15 mg kg−1; Cr 18 mg kg−1; Cu 22 mg kg−1; Mn 536 mg kg−1; Ni 35.5 mg kg−1; Pb 6 mg kg−1; V 94 mg kg−1; Zn 65 mg kg−1. Principal component analysis and CA suggested that Co, Ni and Mn were mainly derived from geogenic origin, while Ba, Cr, Cu, Pb, V and Zn from anthropic origin. Contamination factor indicated that some soil samples were classified as considerable contaminated to very highly contaminated by Ba, Pb, Zn and V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this work are available from the corresponding author (P. Tume).

References

  • Acosta, J. A., Cano, A. F., Arocena, J. M., Debela, F., & Martínez-Martínez, S. (2009). Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma, 149(1–2), 101–109. https://doi.org/10.1016/j.geoderma.2008.11.034.

    Article  CAS  Google Scholar 

  • Ahumada, I., Escudero, P., Ascar, L., Mendoza, J., & Richter, P. (2004). Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Communications in Soil Science and Plant Analysis, 35(11–12), 1615–1634. https://doi.org/10.1081/css-120038558.

    Article  CAS  Google Scholar 

  • Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society Series B (Methodological), 44(2), 139–177.

    Article  Google Scholar 

  • Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in english soil. Science of The Total Environment., 454–455, 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005.

    Article  CAS  Google Scholar 

  • Berasaluce, M., Mondaca, P., Schuhmacher, M., Bravo, M., Sauvé, S., Navarro-Villarroel, C., Dovletyarova, E. A., & Neaman, A. (2019). Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile. Journal of Trace Elements in Medicine and Biology, 54, 156–162. https://doi.org/10.1016/j.jtemb.2019.04.006.

    Article  CAS  Google Scholar 

  • Bochetti, M. J., Muñoz, E., Tume, P., & Bech, J. (2018). Analysis of three indirect methods for estimating the evapotranspiration in the agricultural zone of Chillán. Chile Obras y Proyectos, 19, 74–81.

    Google Scholar 

  • Cabral-Pinto, M. M. S., Inácio, M., Neves, O., Almeida, A. A., Pinto, E., Oliveiros, B., & Ferreira da Silva, E. A. (2019). Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. Exposure and Health. https://doi.org/10.1007/s12403-019-00323-x.

    Article  Google Scholar 

  • Cabral Pinto, M. M. S., Silva, M. M. V. G., Ferreira da Silva, E. A., Dinis, P. A., & Rocha, F. (2017). Transfer processes of potentially toxic elements (PTE) from rocks to soils and the origin of PTE in soils: A case study on the island of Santiago (Cape Verde). Journal of Geochemical Exploration, 183, 140–151. https://doi.org/10.1016/j.gexplo.2017.06.004.

    Article  CAS  Google Scholar 

  • Cachada, A., Dias, A. C., Pato, P., Mieiro, C., Rocha-Santos, T., Pereira, M. E., Ferreira da Silva, E., & Duarte, A. C. (2013). Major inputs and mobility of potentially toxic elements contamination in urban areas. Environmental Monitoring and Assessment, 185(1), 279–294. https://doi.org/10.1007/s10661-012-2553-9.

    Article  CAS  Google Scholar 

  • Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., & Gajić, B. (2016). Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. CATENA, 139, 44–52. https://doi.org/10.1016/j.catena.2015.12.001.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Duncan, C., MacNab, C., Pringle, B., Stables, S. J., & Willison, D. (2019). Measuring copper, Lead and zinc concentrations and oral bioaccessibility as part of the soils in scottish schools project. Minerals, 9(3), 173.

    Article  CAS  Google Scholar 

  • De Kimpe, C. R., & Morel, J.-L. (2000). Urban soil management: A growing concern. Soil Science, 165(1), 31–40.

    Article  Google Scholar 

  • De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66(3), 505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065.

    Article  CAS  Google Scholar 

  • Dong, B., Zhang, R., Gan, Y., Cai, L., Freidenreich, A., Wang, K., Guo, T., & Wang, H. (2019). Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of The Total Environment, 651, 3127–3138. https://doi.org/10.1016/j.scitotenv.2018.10.130.

    Article  CAS  Google Scholar 

  • Ferraris, F. (1981). Hoja Los Ángeles-Angol, escala 1:250.000, región del Bío-Bío. Instituto de Investigaciones Geológicas. Nº 5.

  • Figueiredo, A. M. G., Tocchini, M., & dos Santos, T. F. S. (2011). Metals in playground soils of São paulo city, Brazil. Procedia Environmental Sciences, 4, 303–309. https://doi.org/10.1016/j.proenv.2011.03.035.

    Article  CAS  Google Scholar 

  • Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68(3), 643–653. https://doi.org/10.1016/j.ecolecon.2008.09.014.

    Article  Google Scholar 

  • Foti, L., Dubs, F., Gignoux, J., Lata, J.-C., Lerch, T. Z., Mathieu, J., Nold, F., Nunan, N., Raynaud, X., Abbadie, L., & Barot, S. (2017). Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Science of The Total Environment, 598, 938–948. https://doi.org/10.1016/j.scitotenv.2017.04.111.

    Article  CAS  Google Scholar 

  • Ginocchio, R., Carvallo, G., Toro, I., Bustamante, E., Silva, Y., & Sepúlveda, N. (2004). Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environmental Pollution, 127(3), 343–352. https://doi.org/10.1016/j.envpol.2003.08.020.

    Article  CAS  Google Scholar 

  • Glorennec, P., Lucas, J.-P., Mandin, C., & Le Bot, B. (2012). French children’s exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: Contamination data. Environment International, 45, 129–134. https://doi.org/10.1016/j.envint.2012.04.010.

    Article  CAS  Google Scholar 

  • González-Grijalva, B., Meza-Figueroa, D., Romero, F. M., Robles-Morúa, A., Meza-Montenegro, M., García-Rico, L., & Ochoa-Contreras, R. (2019). The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. Science of The Total Environment, 657, 1468–1479. https://doi.org/10.1016/j.scitotenv.2018.12.148.

    Article  CAS  Google Scholar 

  • Gredilla, A., Fdez-Ortiz de Vallejuelo, S., Gomez-Nubla, L., Carrero, J. A., de Leão, F. B., Madariaga, J. M., & Silva, L. F. O. (2017). Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environmental Science and Pollution Research, 24(31), 24333–24345. https://doi.org/10.1007/s11356-017-9831-6.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Horváth, A., Szűcs, P., & Bidló, A. (2015). Soil condition and pollution in urban soils: Evaluation of the soil quality in a Hungarian town. Journal of Soils and Sediments, 15(8), 1825–1835. https://doi.org/10.1007/s11368-014-0991-4.

    Article  CAS  Google Scholar 

  • Jarva, J., Tarvainen, T., Reinikainen, J., & Eklund, M. (2010). TAPIR — Finnish national geochemical baseline database. Science of The Total Environment, 408(20), 4385–4395. https://doi.org/10.1016/j.scitotenv.2010.06.050.

    Article  CAS  Google Scholar 

  • Jenks, W. F. (1956). Handbook of South American Geology, vol 65. Geological Society of America.

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. . CRC Press, Taylor & Francis Group, Boca Raton, FL.

    Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Brännvall, E., Taraškevičius, R., Aksamitauskas, Č, & Zinkutė, R. (2011). Spatial variability of topsoil contamination with trace elements in preschools in Vilnius. Lithuania. Journal of Geochemical Exploration, 108(1), 15–20. https://doi.org/10.1016/j.gexplo.2010.08.003.

    Article  CAS  Google Scholar 

  • Levin, M. J., Kim, K-H. J., Morel, J. L., Burghardt, W., Charzynski, P., Shaw R. K, SUITMA IWG (2017) Soils within Cities. Catena,

  • Li, G., Sun, G. X., Ren, Y., Luo, X. S., & Zhu, Y. G. (2018). Urban soil and human health: A review. European Journal of Soil Science, 69(1), 196–215. https://doi.org/10.1111/ejss.12518.

    Article  Google Scholar 

  • Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health, Part A, 42(9), 1241–1250. https://doi.org/10.1080/10934520701435684.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., & Otabbong, E. (2006). Metals in soils of children’s urban environments in the small northern European city of Uppsala. Science of The Total Environment, 366(2), 749–759. https://doi.org/10.1016/j.scitotenv.2005.09.073.

    Article  CAS  Google Scholar 

  • Monaci, F., & Bargagli, R., (1997). Barium and other trace metals as indicators of vehicle emissions. Water, Air, and Soil Pollution, 100(1), 89-98. https://doi.org/10.1023/A:1018318427017.

    Article  CAS  Google Scholar 

  • Meteorológica de Chile D (2016) Climatología. http://www.meteochile.gob.cl/climatologia.php. Accessed 09/24/2016.

  • Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2012). Multi-criteria ranking and source identification of metals in public playgrounds in Queensland, Australia. Geoderma, 173–174, 173–183. https://doi.org/10.1016/j.geoderma.2011.12.013.

    Article  CAS  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Ng, S. L., Chan, L. S., Lam, K. C., & Chan, W. K. (2003). Heavy metal contents and magnetic properties of playground dust in Hong Kong. Environmental Monitoring and Assessment, 89(3), 221–232. https://doi.org/10.1023/a:1026103318778.

    Article  CAS  Google Scholar 

  • Nielsen, S. N. (2005). The triassic santa juana formation at the lower Biobío River, south central Chile. Journal of South American Earth Sciences, 19(4), 547–562. https://doi.org/10.1016/j.jsames.2005.06.002.

    Article  Google Scholar 

  • Parra, S., Bravo, M. A., Quiroz, W., Moreno, T., Karanasiou, A., Font, O., Vidal, V., & Cereceda, F. (2014). Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere, 111, 513–521. https://doi.org/10.1016/j.chemosphere.2014.03.127.

    Article  CAS  Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: An introduction. Geological Society, London, Special Publications, 264(1), 1–10. https://doi.org/10.1144/gsl.sp.2006.264.01.01.

    Article  CAS  Google Scholar 

  • Presley, S. M., Abel, M. T., Austin, G. P., Rainwater, T. R., Brown, R. W., McDaniel, L. N., Marsland, E. J., Fornerette, A. M., Dillard, M. L., Rigdon, R. W., Kendall, R. J., & Cobb, G. P. (2010). Metal concentrations in schoolyard soils from new Orleans, Louisiana before and after Hurricanes Katrina and Rita. Chemosphere, 80(1), 67–73. https://doi.org/10.1016/j.chemosphere.2010.03.031.

    Article  CAS  Google Scholar 

  • Pruvot, C., Douay, F., Hervé, F., & Waterlot, C. (2006). Heavy metals in soil, Crops and grass as a source of human exposure in the former mining areas (6 pp). Journal of Soils and Sediments, 6(4), 215–220. https://doi.org/10.1065/jss2006.10.186.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E., & Ladenberger, A. (2012). The concept of compositional data analysis in practice — Total major element concentrations in agricultural and grazing land soils of Europe. Science of The Total Environment, 426, 196–210. https://doi.org/10.1016/j.scitotenv.2012.02.032.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of The Total Environment, 346(1–3), 1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R. . Chichester: Wiley.

    Book  Google Scholar 

  • Reis, A. P., Patinha, C., Wragg, J., Dias, A. C., Cave, M., Sousa, A. J., Batista, M. J., Prazeres, C., Costa, C., Ferreira da Silva, E., & Rocha, F. (2014). Urban geochemistry of lead in gardens, playgrounds and schoolyards of Lisbon, Portugal: Assessing exposure and risk to human health. Applied Geochemistry, 44, 45–53. https://doi.org/10.1016/j.apgeochem.2013.09.022.

    Article  CAS  Google Scholar 

  • Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2019). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00404-5.

    Article  Google Scholar 

  • Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2020). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental Geochemistry and Health, 42(8), 2573–2594. https://doi.org/10.1007/s10653-019-00404-5.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88. https://doi.org/10.1016/j.envint.2019.02.011.

    Article  CAS  Google Scholar 

  • Rodríguez-Oroz, D., Vidal, R., Fernandoy, F., Lambert, F., & Quiero, F. (2018). Metal concentrations and source identification in Chilean public children’s playgrounds. Environmental Monitoring and Assessment, 190(12), 703. https://doi.org/10.1007/s10661-018-7056-x.

    Article  CAS  Google Scholar 

  • Salmani-Ghabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Cereceda-Balic, F., Fadic, X., Vidal, V., Funes, M., & Pinilla-Gil, E. (2016). Spatial gradient of human health risk from exposure to trace elements and radioactive pollutants in soils at the Puchuncaví-Ventanas industrial complex, Chile. Environmental Pollution, 218, 322–330. https://doi.org/10.1016/j.envpol.2016.07.007.

    Article  CAS  Google Scholar 

  • Salmanighabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Fadic-Ruiz, X., Vidal-Cortez, V., Cereceda-Balic, F., & Pinilla-Gil, E. (2015). Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas, central Chile. Science of The Total Environment, 527–528, 335–343. https://doi.org/10.1016/j.scitotenv.2015.05.010.

    Article  CAS  Google Scholar 

  • Schalscha, E., & Ahumada, I. (1998). Heavy metals in rivers and soils of central Chile. Water Science and Technology, 37(8), 251–255. https://doi.org/10.1016/s0273-1223(98)00255-8.

    Article  Google Scholar 

  • Stalikas, C. D., Chaidou, C. I., & Pilidis, G. A. (1997). Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia (Greece). Science of The Total Environment, 204(2), 135–146. https://doi.org/10.1016/S0048-9697(97)00156-3.

    Article  CAS  Google Scholar 

  • Tanić, M. N., Ćujić, M. R., Gajić, B. A., Daković, M. Z., & Dragović, S. D. (2018). Content of the potentially harmful elements in soil around the major coal-fired power plant in Serbia: Relation to soil characteristics, evaluation of spatial distribution and source apportionment. Environment and Earth Science, 77(1), 28. https://doi.org/10.1007/s12665-017-7214-4.

    Article  CAS  Google Scholar 

  • Taraškevičius, R., Motiejūnaitė, J., Zinkutė, R., Eigminienė, A., Gedminienė, L., & Stankevičius, Ž. (2017). Similarities and differences in geochemical distribution patterns in epiphytic lichens and topsoils from kindergarten grounds in Vilnius. Journal of Geochemical Exploration, 183, 152–165. https://doi.org/10.1016/j.gexplo.2017.08.013.

    Article  CAS  Google Scholar 

  • Tume, P., Barrueto, K., Olguin, M., Torres, J., Cifuentes, J., Ferraro, F. X., Roca, N., Bech, J., & Cornejo, O. (2020). The influence of the industrial area on the pollution outside its borders: A case study from Quintero and Puchuncavi districts. Chile Environmental Geochemistry and Health, 42(8), 2557–2572. https://doi.org/10.1007/s10653-019-00423-2.

    Article  CAS  Google Scholar 

  • Tume, P., González, E., King, R. W., Cuitiño, L., Roca, N., & Bech, J. (2018a). Distinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano Chile. Journal of Soils and Sediments, 18(6), 2335–2349. https://doi.org/10.1007/s11368-017-1750-0.

    Article  CAS  Google Scholar 

  • Tume, P., González, E., Reyes, F., Fuentes, J. P., Roca, N., Bech, J., & Medina, G. (2019). Sources analysis and health risk assessment of trace elements in urban soils of Hualpen, Chile. CATENA, 175, 304–316. https://doi.org/10.1016/j.catena.2018.12.030.

    Article  CAS  Google Scholar 

  • Tume, P., King, R., González, E., Bustamante, G., Reverter, F., Roca, N., & Bech, J. (2014). Trace element concentrations in schoolyard soils from the port city of Talcahuano, Chile. Journal of Geochemical Exploration, 147, 229–236.

    Article  CAS  Google Scholar 

  • Tume, P., Roca, N., Rubio, R., King, R., & Bech, J. (2018b). An assessment of the potentially hazardous element contamination in urban soils of Arica, Chile. Journal of Geochemical Exploration, 184, 345–357. https://doi.org/10.1016/j.gexplo.2016.09.011.

    Article  CAS  Google Scholar 

  • Tumuklu, A., Ciflikli, M., & Ozgur, F. Z. (2008). Determination of heavy metals in soils around Afsin-Elbistan thermal power plant (Kahramanmaras, Turkey). Asian Journal of Chemistry, 20(8), 6376–6384.

    CAS  Google Scholar 

Download references

Acknowledgements

The sampling campaign was performed in collaboration with the students from a Contamination Soils course. The Authors appreciate the corrections made by the Editor and Reviewers to improve the original manuscript.

Funding

This work was partially supported by the Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Project 03/2019 and FONDECYT grant 1130366.

Author information

Authors and Affiliations

Authors

Contributions

PT contributed to conceptualization, methodology, sampling, writing-original draft preparation and editing; VA was involved in data curation and investigation; NR contributed to investigation and writing-reviewing; Frances XF contributed to Geology; JB contributed to supervision.

Corresponding author

Correspondence to Pedro Tume.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tume, P., Acevedo, V., Roca, N. et al. Potentially toxic elements concentrations in schoolyard soils in the city of Coronel, Chile. Environ Geochem Health 44, 1521–1535 (2022). https://doi.org/10.1007/s10653-021-00909-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00909-y

Keywords

Navigation