Skip to main content

Advertisement

Log in

Main features and contamination of sealed soils in the east of Moscow city

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The aim of this paper is to characterize the main properties and level of pollution of sealed soils in different land use zones of the Eastern administrative district (EAD) of Moscow. In 2016–2017 overall, 47 samples were taken from 35 soil pits. The list of soil properties analyzed included actual acidity, organic carbon content, particle-size distribution, and degree of salinity. Pollution of sealed soils with petroleum products (PPs), benzo[a]pyrene (BaP) and heavy metals and metalloids (HMMs) was evaluated. Sealed soils are characterized by the medium organic matter content (2.24%), alkaline reaction (pH 8.0), sandy loamy texture, and the absence of soluble salts in the upper part of the profile. The pronounced technogenic anomalies of hydrocarbons are mainly formed in the sealed soils of the industrial and traffic land use zones. The mean content of BaP in the sealed soils is 56 times higher than that in the background soils, it exceeds MPC by 9.5 times. The concentrations of most HMMs in the sealed soils exceed the background level by two–four times. The most intense accumulation of As, Ba, Cr, Cu, Ni, Pb, Sb, and Sn takes place in the industrial zone with the high degree of sealing. The hygienic standards for BaP and PPs contents approved in the Russian Federation in the sealed soils of EAO are exceeded by almost ten times. Maximum permissible concentrations are also exceeded for a large group of HMMs. The high contamination of the sealed soils can create dangerous ecological situation in the EAD if road covering will be removed and pollutants begin to migrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017. https://doi.org/10.1016/j.envint.2004.04.004

    Article  CAS  Google Scholar 

  • Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation. Environmental Management, 60(4), 758–783. https://doi.org/10.1007/s00267-017-0896-2

    Article  Google Scholar 

  • Bezuglaya, E. Y., & Smirnova, I. V. (2008). The air of cities and its changes (Asterion.). St.Petersburg. (in Russian).

  • Birke, M., Rauch, U., & Stummeyer, J. (2011). Urban geochemistry of Berlin, Germany. In Mapping the chemical environment of urban areas. Wiley, pp. 245–268.

  • Bityukova, V. R., & Saulskaya, T. D. (2017). Change in the anthropogenic impact of industrial zones in Moscow in the post-Soviet period. Vestnik Moscow University. Series 5. Geography, 3, 24–33.

    Google Scholar 

  • Burghardt, W. (2017). Soil Sealing – Ways, Constraints, Benefits and Management. In M. J. Levin, K. H. J. Kim, J. L. Morel, W. Burghardt, P. Charzynski, & R. K. Shaw (Eds.), Soils within Cities Catena. Schweizerbart Science Publishers.

    Google Scholar 

  • Burghardt, W., & von Bertrab, M. (2016). Dialeimmasol, urban soil of pavements. Journal of Soils and Sediments, 16(11), 2500–2513. https://doi.org/10.1007/s11368-016-1526-y

    Article  CAS  Google Scholar 

  • Charlesworth, S., De Miguel, E., & Ordonez, A. (2011). A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environmental Geochemistry and Health, 33(2), 103–123. https://doi.org/10.1007/s10653-010-9325-7

    Article  CAS  Google Scholar 

  • Charzyński, P., Plak, A., & Hanaka, A. (2017). Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-8209-5

    Article  Google Scholar 

  • Chen, S., Wu, C., Hong, S., & Chen, Q. (2020). Assessment, distribution and regional geochemical baseline of heavy metals in soils of densely populated area: A case study. International Journal Environment Resources Public Health. https://doi.org/10.3390/ijerph17072269

    Article  Google Scholar 

  • Chernyanskii, S. S., Alekseeva, T. A., Gennadiev, A. N., & Pikovsky, Y. I. (2001). Organic profile of soddy-gley soil strongly polluted by polycyclic aromatic hydrocarbons. Eurasian Soil Science, 34(11), 1170–1179.

    Google Scholar 

  • Crommentuijn, T., Sijm, D., de Bruijn, J., van den Hoop, M., van Leeuwen, K., & van de Plassche, E. (2000). Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. Journal of Environmental Management, 60(2), 121–143. https://doi.org/10.1006/jema.2000.0354

    Article  Google Scholar 

  • Demetriades, A., & Birke, M. (2015). Urban geochemical mapping manual: Sampling, sample preparation, laboratory analysis, quality control check, statistical processing and map plotting. EuroGeoSurveys.

    Google Scholar 

  • Ďuriš, M. (2011). Geochemical and ecological survey of the Prague city area Czech Republic Mapping the chemical environment of urban areas. Oxford: Wiley.

    Google Scholar 

  • Ecological atlas of Moscow. (2000) (ABF Publis.). Moscow.

  • EEA. (2017). European Environment Agency. Urban soil sealing in Europe. http://www.eea.europa.eu/articles/urban-soil-sealing-in-europe. Accessed 12 October 2017

  • FAO. (2006). Guidelines for soil description. in disease management & health outcomes. Guidelines for soil description. doi: https://doi.org/10.2165/00115677-199701040-00003.

  • Fernández, P., Vilanova, R. M., Martínez, C., Appleby, P., & Grimalt, J. O. (2000). The historical record of atmospheric pyrolytic pollution over europe registered in the sedimentary pah from remote mountain lakes. Environmental Science & Technology, 34(10), 1906–1913. https://doi.org/10.1021/es9912271

    Article  CAS  Google Scholar 

  • Foti, L., Dubs, F., Gignoux, J., Lata, J.-C., Lerch, T. Z., Mathieu, J., Nold, F., Nunan, N., Raynaud, X., Abbadie, L., & Barot, S. (2017). Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Science of the Total Environment, 598, 938–948. https://doi.org/10.1016/j.scitotenv.2017.04.111

    Article  CAS  Google Scholar 

  • Ganjara, N. F. (Ed.). (2005). Ecological Requirements for Soils and Grounds in Moscow (Agroconsul.). Moscow.

  • Gennadiev, A. N., & Pikovsky, Y. I. (Eds.). (1996). Geochemistry of polycyclic aromatic hydrocarbons in rocks and soils (Moscow Uni.). Moscow.

  • Gerasimova, M. I., Strogonova, M. N., Mozharova, N. V., & Prokofieva, T. V. (2003). Anthropogenic soils (genesis, geography, reclamation) (Oikumena.). Moscow.

  • Gesentsvey, L. B., Gorelyshev, N. V., Boguslavsky, A. M., & Korolev, I. V. (1985). Road asphalt concrete (Traffic.). Moscow.

  • Glazovskaya, M. A., Solntseva, N. P., & Gennadiev, A. N. (1986). Techno-pedogenesis: forms of manifestations. In:VA Kovda, MA Glazovskaya (Eds.), Success of soil science (Nauka., pp. 106–112). Moscow.

  • IUSS Working Group WRB. (2015). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. (Food and Agriculture Organization of the United Nations. World soil resources reports no. 106.). Rome.

  • Jacob, J. (2008). The significance of polycyclic aromatic hydrocarbons as environmental carcinogens. 35 years research on PAH – a retrospective. Polycyclic Aromatic Compounds, 28(4–5), 242–272.

    Article  CAS  Google Scholar 

  • Jiao, X., Dong, Z., Kang, S., Li, Y., Jiang, C., & Rostami, M. (2021). New insights into heavy metal elements deposition in the snowpacks of mountain glaciers in the eastern Tibetan Plateau. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2020.111228

    Article  Google Scholar 

  • Kasimov, N. S., Bityukova, V. R., Malkhazova, S. M., Kosheleva, N. E.,Nikiforova, E.M., Shartova, N. V., Vlasov, D. V., Timonin, S.A., & Krainov, V.N. (2014). Regions and cities of Russia: an integral assessment of the environmental state (IP Filimon.). Moscow.

  • Kasimov, N. S., Vlasov, D. V., Kosheleva, N. E., & Nikiforova, E. M. (2016). Geochemistry of the landscapes in the Eastern Moscow (APR.). Moscow.

  • Kasimov, N. S., Kosheleva, N. E., Nikiforova, E. M., & Vlasov, D. V. (2017). Benzo[a ]pyrene in urban environments of eastern Moscow: Pollution levels and critical loads. Atmospheric Chemistry and Physics, 17(3), 2217–2227. https://doi.org/10.5194/acp-17-2217-2017

    Article  CAS  Google Scholar 

  • Kasimov, N. S., Nikiforova, E. M., Kosheleva, N. E., & Khaybrakhmanov, T. S. (2012). Geoinformation landscape-geochemical mapping of urban areas (on the example of EAD in Moscow). 1. Cartographic Support. Geoinformatics, 4, 37–45.

    Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment. https://doi.org/10.1016/1352-2310(94)00275-P

    Article  Google Scholar 

  • Khaybrakhmanov, T. S., Nikiforova, E. M., & Kosheleva, N. E. (2017). Cartographic support of environmental and geochemical evaluation of sealed soils on urbanized territories. Proceedings of the International conference “InterCarto/InterGIS,” 1(23), 256–266. doi:https://doi.org/10.24057/2414-9179-2017-1-23-256-266

  • Kosheleva, N. E., & Nikiforova, E. M. (2011). Multiyear dynamics and factors of accumulation of benzo(a)pyrene in urban soils (on the example of the Eastern Administrative Okrug, Moscow). Moscow University Soil Science Bulletin, 66(2), 65–74. https://doi.org/10.3103/s0147687411020062

    Article  Google Scholar 

  • Kosheleva, N. E., & Nikiforova, E. M. (2016). Long-term dynamics of urban soil pollution with heavy metals in Moscow. Applied and Environmental Soil Science, 2016, 1–10. https://doi.org/10.1155/2016/5602795

    Article  CAS  Google Scholar 

  • Kupiainen, K. J., Tervahattu, H., Räisänen, M., Mäkelä, T., Aurela, M., & Hillamo, R. (2005). Size and composition of airborne particles from pavement wear, tires, and traction sanding. Environmental Science and Technology, 39, 699–706. https://doi.org/10.1021/es035419e

    Article  CAS  Google Scholar 

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science & Technology, 37(9), 1873–1881. https://doi.org/10.1021/es0206184

    Article  CAS  Google Scholar 

  • Legret, M., Odie, L., Demare, D., & Jullien, A. (2005). Leaching of heavy metals and polycyclic aromatic hydrocarbons from reclaimed asphalt pavement. Water Research, 39, 3675–3685. https://doi.org/10.1016/j.watres.2005.06.017

    Article  CAS  Google Scholar 

  • Levin, M. J., Kim, K.-H.J., Morel, J. L., Burghardt, W., Charzynski, P., & Shaw, R. K. (Eds.). (2017). Soils within Cities: Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publishers.

    Google Scholar 

  • Lianga, S.-Y., Cui, J.-L., Bi, X.-Y., Luo, X.-S., & Lia, X.-D. (2019). Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. Science of the Total Environment, 695, 133596. https://doi.org/10.1016/j.scitotenv.2019.133596

    Article  CAS  Google Scholar 

  • Limbeck, A., & Puls, C. (2010). Particulate Emissions from On-Road Vehicles. In F. Zereini & C. L. S. Wiseman (Eds.), Urban Airborne Particulate Matter. Berlin: Springer.

    Google Scholar 

  • Manuylov, M. V., & Moskovkin, V. M. (2016). Influence of surface run-off (rain and thawed waters) on the ecological and technogenic situation in cities. Water and ecology: problems and solutions, 2, 35–47. (in Russian).?

  • Nam, J. J., Sweetman, A. J., & Jones, K. C. (2009). Polynuclear aromatic hydrocarbons (PAHs) in global background soils. Journal of Environmental Monitoring, 11(1), 45–48. https://doi.org/10.1039/B813841A

    Article  CAS  Google Scholar 

  • Nikiforova, E. M., & Kosheleva, N. E. (2011). Polycyclic aromatic hydrocarbons in urban soils (Moscow, Eastern District). Eurasian Soil Science, 44(9), 1018–1030. https://doi.org/10.1134/S1064229311090092

    Article  CAS  Google Scholar 

  • Nikiforova, E., Kosheleva, N., & Kasimov, N. (2019). Accumulation of polycyclic aromatic hydrocarbons in sealed soils and their environmental hazard for eastern Moscow. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2019.1696380

    Article  Google Scholar 

  • Pikovsky, Y. I., Ismayilov, N. M., & Dorokhova, M. F. (2015). Fundamentals of oil and gas geoecology (INFRA-M.). Moscow.

  • Pikovsky, Y. I., Gennadiev, A. N., Krasnopeeva, A. A., Puzanova, Т. А. (2012). Natural and technogenic hydrocarbon geochemical fields in soils: concept, typology, indicator significance. In: Kasimov, N. S., Gerasimova, M. I. (eds). Geochemistry of landscapes and geography of soils. 100th Anniversary of the Birth of MA Glazovskaya. APR, Moscow, pp 236–258 (In Russian).

  • Piotrowska-Długosz, A., & Charzyński, P. (2015). The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toruń (Poland). J. Soils & Sediments, 15, 47–59. https://doi.org/10.1007/s11368-014-0963-8

    Article  Google Scholar 

  • Prokofeva, T. V., Gerasimova, M. I., Bezuglova, O. S., Bakhmatova, K. A., Goleva, A. A., Gorbov, S. N., et al. (2014). Inclusion of soils and soil-like bodies of urban territories into the Russian soil classification system. Eurasian Soil Science. https://doi.org/10.1134/S1064229314100093

    Article  Google Scholar 

  • Prokofieva, T. V. (1998). Urban soil, sealed with road surfaces (based on the example of Moscow). PhD diss. (Faculty of Soil Science, Lomonosov Moscow State University.). Moscow.

  • Prokofyeva, T. V., Martynenko, I. A., & Ivannikov, F. A. (2011). Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils. Eurasian Soil Science, 44(5), 561–571. https://doi.org/10.1134/S1064229311050127

    Article  Google Scholar 

  • Romzaykina, O., Vasenev, V., Andrianova, D., Neaman, A., & Gosse, D. (2020). The Effect of Sealing on Soil Carbon Stocks in New Moscow. Berlin: Springer.

    Book  Google Scholar 

  • Saet, Y. E., Revich, B. A., Yanin, E. P., Smirnova, R. S., Bashkarevich, I. L., Onishchenko, T. L., et al. (1990). Geochemistry of the environment. Nedra.

    Google Scholar 

  • Stroganova, M. N., & Prokofieva, T. V. (1995). Influence of road covering on urban soils. Moscow University Soil Science Bulletin, 2, 3–11.

    Google Scholar 

  • Tarafdar, A., & Sinha, A. (2017). Estimation of decrease in cancer risk by biodegradation of PAHs content from an urban traffic soil. Environmental Science and Pollution Research, 24(11), 10373–10380. https://doi.org/10.1007/s11356-017-8676-3

    Article  CAS  Google Scholar 

  • Tume, P., González, E., Reyes, F., Fuentes, J. P., Roca, N., Bech, J., & Medina, G. (2019). Sources analysis and health risk assessment of trace elements in urban soils of Hualpen, Chile. CATENA, 175, 304–316. https://doi.org/10.1016/j.catena.2018.12.030

    Article  CAS  Google Scholar 

  • Turer, D., Maynard, J. B., & Sansalone, J. J. (2001). Heavy metal contamination in soils of urban highways: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution, 132(3–4), 293–314. https://doi.org/10.1023/A:1013290130089

    Article  CAS  Google Scholar 

  • Vodyanitskii, Y. N. (2009). Heavy and Superheavy Metals and Metalloids in Polluted Soils (Heavy and.). Moscow.

  • Vodyanitskii, Y. N. (2016). Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science, 14(3), 257–263. https://doi.org/10.1016/j.aasci.2016.08.011

    Article  Google Scholar 

  • von Gunten, K., Konhauser, K. O., & Alessi, D. S. (2020). Potential of asphalt concrete as a source of trace metals. Environmental Geochemistry and Health, 42, 397–405. https://doi.org/10.1007/s10653-019-00370-y

    Article  CAS  Google Scholar 

  • Wessolek, G. (2008). Sealing of Soils. In Urban Ecology. An international perspective on the interaction between humans and nature (pp. 161–179). Boston, MA: Springer US. doi:https://doi.org/10.1007/978-0-387-73412-5_10

  • Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget. Environmental Pollution, 88(1), 91–108. https://doi.org/10.1016/0269-7491(95)91052-M

    Article  CAS  Google Scholar 

  • Zabelina, O. N., & Zlyvko, A. S. (2015). Biological activity of the sealed soil on urbanized territories. Progresses of Modern Natural Science, 5, 167–170.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to undergraduates of the Geographical Faculty of Moscow State University E.V. Shestova and A.G. Tsykhman for their participation in field studies and chemical analyses of the samples and an assistant professor of the Faculty of Geography M.A. Smirnova for a consultation. This study was supported by the Russian Science Foundation. Field and analytical works were performed within the framework of the project no. 14-27-00083, data analysis and interpretation – within the Project No. 19-77-30004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Timofeev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforova, E.M., Kasimov, N.S., Kosheleva, N.E. et al. Main features and contamination of sealed soils in the east of Moscow city. Environ Geochem Health 44, 1697–1711 (2022). https://doi.org/10.1007/s10653-021-01132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01132-5

Keywords

Navigation