Skip to main content

Advertisement

Log in

Chemical composition, oxidative potential and identifying the sources of outdoor PM2.5 after the improvement of air quality in Beijing

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Air pollution poses a serious threat to human health. The implementation of air pollution prevention and control policies has gradually reduced the level of atmospheric fine particles in Beijing. Exploring the latest characteristics of PM2.5 has become the key to further improving pollution reduction measures. In the current study, outdoor PM2.5 samples were collected in the spring and summer of Beijing, and the chemical species, oxidative potential (OP), and sources of PM2.5 were characterized. The mean PM2.5 concentration during the entire study period was 41.6 ± 30.9 μg m−3. Although the PM2.5 level in summer was lower, its OP level was significantly higher than that in spring. SO42–, NH4+, EC, NO3–, and OC correlated well with volume-normalized OP (OPv). Strong positive correlations were found between OPv and the following elements: Cu, Pb, Zn, Ni, As, Cr, Sn, Cd, Al, and Mn. Seven sources of PM2.5 were identified, including traffic, soil dust, secondary sulfate, coal and biomass burning, oil combustion, secondary nitrate, and industry. Multiple regression analysis indicated that coal and biomass combustion, industry, and traffic were the main contributors to the OPv in spring, while secondary sulfate, oil combustion, and industry played a leading role in summer. The source region analysis revealed that different pollution sources were related to specific geographic distributions. In addition to local emission reduction policies, multi-provincial cooperation is necessary to further improve Beijing's air quality and reduce the adverse health effects of PM2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source to OPv in spring b and summer c

Fig. 7

Similar content being viewed by others

Data availability

The Meteorological and PBLH data analyzed in this study were provided by the Chinese National Meteorological Science Data Center (http://data.cma.cn) and the European Center of Medium-Range Weather Forecasts Reanalysis v5 (https://www.ecmwf.int/).

References

  • BEE, 2017. Beijing environmental statement 2016. Beijing Municipal Ecology and Environment Bureau, http://sthjj.beijing.gov.cn/bjhrb/resource/cms/2018/04/2018042409542462126.pdf.

  • BEE, 2018. Beijing environmental statement 2017. Beijing Municipal Ecology and Environment Bureau, http://sthjj.beijing.gov.cn/bjhrb/resource/cms/2018/05/2018051614522475279.pdf.

  • BEE, 2019. Beijing environmental statement 2018. Beijing Municipal Ecology and Environment Bureau, http://sthjj.beijing.gov.cn/bjhrb/resource/cms/2019/05/2019050915390769405.pdf.

  • Bu, X., Xie, Z., Liu, J., Wei, L., Wang, X., Chen, M., & Ren, H. (2021). Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environmental Research, 197, 111123.

    Article  CAS  Google Scholar 

  • Cui, Y., Ji, D., Maenhaut, W., Gao, W., Zhang, R., & Wang, Y. (2020). Levels and sources of hourly PM2.5-related elements during the control period of the COVID-19 pandemic at a rural site between Beijing and Tianjin. Science of the Total Environment, 744, 140840.

    Article  CAS  Google Scholar 

  • Ekka, S., Sahu, S. K., Dwivedi, S., Khuman, S. N., Das, S., Gaonkar, O., & Chakraborty, P. (2021). Seasonality, atmospheric transport and inhalation risk assessment of polycyclic aromatic hydrocarbons in PM2.5 and PM10 from industrial belts of Odisha India. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01128-1

    Article  Google Scholar 

  • Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., & Weber, R. J. (2017). Highly acidic ambient particles, soluble metals, and oxidative potential: A link between sulfate and aerosol toxicity. Environmental Science Technology, 51, 2611–2620.

    Article  CAS  Google Scholar 

  • Fang, T., Verma, V., Bates, J. T., Abrams, J., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., Russell, A. G., & Weber, R. J. (2016). Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmospheric Chemistry and Physics, 16, 3865–3879.

    Article  CAS  Google Scholar 

  • Gad, S. C. (2014). Barium. In P. Wexler (Ed.), Encyclopedia of Toxicology (3rd ed., pp. 368–370). Academic Press.

    Chapter  Google Scholar 

  • Gali, N. K., Jiang, S. Y., Yang, F., Sun, L., & Ning, Z. (2017). Redox characteristics of size-segregated PM from different public transport microenvironments in Hong Kong. Air Quality Atmosphere and Health, 10, 833–844.

    Article  CAS  Google Scholar 

  • Gao, J., Wang, K., Wang, Y., Liu, S., Zhu, C., Hao, J., Liu, H., Hua, S., & Tian, H. (2018). Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environmental Pollution, 233, 714–724.

    Article  CAS  Google Scholar 

  • Ghio, A. J., Carraway, M. S., & Madden, M. C. (2012). Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. Journal of Toxicology and Environmental Health-Part B-Critical Reviews, 15, 1–21.

    Article  CAS  Google Scholar 

  • Han, L., Sun, Z., He, J., Hao, Y., Tang, Q., Zhang, X., Zheng, C., & Miao, S. (2020). Seasonal variation in health impacts associated with visibility in Beijing China. Science of the Total Environment, 730, 139149.

    Article  CAS  Google Scholar 

  • Huang, X., Tang, G., Zhang, J., Liu, B., Liu, C., Zhang, J., Cong, L., Cheng, M., Yan, G., Gao, W., Wang, Y., & Wang, Y. (2021). Characteristics of PM2.5 pollution in Beijing after the improvement of air quality. Journal of Environmental Sciences, 100, 1–10.

    Article  Google Scholar 

  • Jain, S., Sharma, S. K., Vijayan, N., & Mandal, T. K. (2020). Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi India. Environmental Pollution, 262, 114337.

    Article  CAS  Google Scholar 

  • Li, D., Li, Y., Li, G., Zhang, Y., Li, J., & Chen, H. (2019). Fluorescent reconstitution on deposition of PM2.5 in lung and extrapulmonary organs. Proceedings of the National Academy of Sciences, 116, 2488–2493.

    Article  CAS  Google Scholar 

  • Liang, Z., Zhao, X., Chen, J., Gao, L., Zhu, A., Wang, Z., Li, S., Shan, J., Long, Y., Yan, C., & Zhang, K. (2019). Seasonal characteristics of chemical compositions and sources identification of PM2.5 in Zhuhai China. Environmental Geochemistry and Health, 41, 715–728.

    Article  CAS  Google Scholar 

  • Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., Coelho, M. S. Z. S., Saldiva, P. H. N., Lavigne, E., Matus, P., Valdes Ortega, N., Osorio Garcia, S., Pascal, M., Stafoggia, M., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Díaz, M., Cruz, J., … Kan, H. (2019). Ambient particulate air pollution and daily mortality in 652 cities. New England Journal of Medicine, 381, 705–715.

    Article  CAS  Google Scholar 

  • Liu, L., Liu, Y. S., Wen, W., Liang, L. L., Ma, X., Jiao, J., & Guo, K. (2020). Source identification of trace elements in PM2.5 at a rural site in the North China plain. Atmosphere, 11(2), 179.

    Article  Google Scholar 

  • Liu, L., Ma, X., Wen, W., Sun, C., & Jiao, J. (2021). Characteristics and potential sources of wintertime air pollution in Linfen China. Environmental Monitoring and Assessment, 193, 252.

    Article  CAS  Google Scholar 

  • Liu, W., Xu, Y., Liu, W., Liu, Q., Yu, S., Liu, Y., Wang, X., & Tao, S. (2018). Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environmental Pollution, 236, 514–528.

    Article  CAS  Google Scholar 

  • Luo, Y., Zhou, X., Zhang, J., Xue, L., Chen, T., Zheng, P., Sun, J., Yan, X., Han, G., & Wang, W. (2020). Characteristics of airborne water-soluble organic carbon (WSOC) at a background site of the North China Plain. Atmospheric Research, 231, 104668.

    Article  CAS  Google Scholar 

  • Massimi, L., Ristorini, M., Simonetti, G., Frezzini, M. A., Astolfi, M. L., & Canepari, S. (2020). Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. Environmental Pollution, 266, 115271.

    Article  CAS  Google Scholar 

  • Miao, Y., Liu, S., Guo, J., Yan, Y., Huang, S., Zhang, G., Zhang, Y., & Lou, M. (2018). Impacts of meteorological conditions on wintertime PM2.5 pollution in Taiyuan, North China. Environmental Science and Pollution Research, 25, 21855–21866.

    Article  CAS  Google Scholar 

  • Moufarrej, L., Courcot, D., & Ledoux, F. (2020). Assessment of the PM2.5 oxidative potential in a coastal industrial city in Northern France: Relationships with chemical composition, local emissions and long range sources. Science of the Total Environment, 748, 141448.

    Article  CAS  Google Scholar 

  • Nakano, T., Yokoo, Y., Nishikawa, M., & Koyanagi, H. (2004). Regional Sr–Nd isotopic ratios of soil minerals in northern China as Asian dust fingerprints. Atmospheric Environment, 38, 3061–3067.

    Article  CAS  Google Scholar 

  • Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and user guide. U.S. Environmental Protection Agency Office of Research and Development.

  • Park, J., Park, E. H., Schauer, J. J., Yi, S.-M., & Heo, J. (2018). Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul Korea. Environment International, 117, 276–283.

    Article  CAS  Google Scholar 

  • Patel, A., & Rastogi, N. (2018). Oxidative potential of ambient fine aerosol over a semi-urban site in the Indo-Gangetic Plain. Atmospheric Environment, 175, 127–134.

    Article  CAS  Google Scholar 

  • Pietrogrande, M. C., Dalpiaz, C., Dell’Anna, R., Lazzeri, P., Manarini, F., Visentin, M., & Tonidandel, G. (2018). Chemical composition and oxidative potential of atmospheric coarse particles at an industrial and urban background site in the alpine region of northern Italy. Atmospheric Environment, 191, 340–350.

    Article  CAS  Google Scholar 

  • Rai, P., Furger, M., Slowik, J. G., Zhong, H., Tong, Y., Wang, L., Duan, J., Gu, Y., Qi, L., Huang, R.-J., Cao, J., Baltensperger, U., & Prévôt, A. S. H. (2021). Characteristics and sources of hourly elements in PM10 and PM2.5 during wintertime in Beijing. Environmental Pollution, 278, 116865.

    Article  CAS  Google Scholar 

  • Schieber, M., & Chandel, N. S. (2014). ROS function in Redox signaling and oxidative stress. Current Biology, 24, R453–R462.

    Article  CAS  Google Scholar 

  • Song, W., Wang, Y.-L., Yang, W., Sun, X.-C., Tong, Y.-D., Wang, X.-M., Liu, C.-Q., Bai, Z.-P., & Liu, X.-Y. (2019). Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing. Environmental Pollution, 248, 183–190.

    Article  CAS  Google Scholar 

  • Strak, M., Janssen, N., Beelen, R., Schmitz, O., Vaartjes, I., Karssenberg, D., van den Brink, C., Bots, M. L., Dijst, M., Brunekreef, B., & Hoek, G. (2017). Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environment International, 108, 228–236.

    Article  CAS  Google Scholar 

  • Thiankhaw, K., Chattipakorn, N., & Chattipakorn, S. C. (2022). PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. Environmental Pollution, 292, 118320.

    Article  CAS  Google Scholar 

  • Wåhlin, P., Berkowicz, R., & Palmgren, F. (2006). Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment, 40, 2151–2159.

    Article  Google Scholar 

  • Wang, J., Jiang, H., Jiang, H., Mo, Y., Geng, X., Li, J., Mao, S., Bualert, S., Ma, S., Li, J., & Zhang, G. (2020). Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion. Atmospheric Environment, 235, 117624.

    Article  CAS  Google Scholar 

  • Wang, M., Hou, S., Lu, X., Li, J., Li, R., & Yan, X. (2021). Interleukin-37 inhibits inflammation activation and disease severity of PM25-induced airway hyperresponsiveness. Ecotoxicology and Environmental Safety, 227, 112890.

    Article  CAS  Google Scholar 

  • Wang, Y. Q., Zhang, X. Y., & Draxler, R. R. (2009). TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environmental Modelling Software, 24, 938–939.

    Article  Google Scholar 

  • Wen, W., Guo, C., Ma, X., Zhao, X., Chen, D., & Xu, J. (2020). Impact of emission reduction on aerosol-radiation interaction during heavy pollution periods over Beijing-Tianjin-Hebei region in China. Journal of Environmental Sciences, 95, 2–13.

    Article  CAS  Google Scholar 

  • WHO. (2021). WHO global air quality guidelines: particulate matter (PM25 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization.

    Google Scholar 

  • Yang, H., Chen, J., Wen, J., Tian, H., & Liu, X. (2016). Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures. Atmospheric Environment, 124, 378–386.

    Article  CAS  Google Scholar 

  • Yang, L., Cheng, S., Wang, X., Nie, W., Xu, P., Gao, X., Yuan, C., & Wang, W. (2013). Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China. Atmospheric Environment, 75, 265–269.

    Article  CAS  Google Scholar 

  • Yang, L., Wang, W.-C., Lung, S.-C.C., Sun, Z., Chen, C., Chen, J.-K., Zou, Q., Lin, Y.-H., & Lin, C.-H. (2017). Polycyclic aromatic hydrocarbons are associated with increased risk of chronic obstructive pulmonary disease during haze events in China. Science of the Total Environment, 574, 1649–1658.

    Article  CAS  Google Scholar 

  • Yang, X., Wang, T., Xia, M., Gao, X., Li, Q., Zhang, N., Gao, Y., Lee, S., Wang, X., Xue, L., Yang, L., & Wang, W. (2018). Abundance and origin of fine particulate chloride in continental China. Science of the Total Environment, 624, 1041–1051.

    Article  CAS  Google Scholar 

  • Yu, C., Yan, J., Zhang, H., Lin, Q., Zheng, H., Zhao, S., Zhong, X., Zhao, S., Zhang, M., & Chen, L. (2021). Chemical characteristics of sulfur-containing aerosol particles across the western North Pacific and the Arctic Ocean. Atmospheric Research, 253, 105480.

    Article  CAS  Google Scholar 

  • Yu, S., Liu, W., Xu, Y., Yi, K., Zhou, M., Tao, S., & Liu, W. (2019). Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation. Science of the Total Environment, 650, 277–287.

    Article  CAS  Google Scholar 

  • Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., & Shen, Z. (2013). Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmospheric Chemistry and Physics, 13, 7053–7074.

    Article  Google Scholar 

  • Zheng, Y., Che, H., Xia, X., Wang, Y., Zhao, H., Wang, H., Estellés, V., An, L., Gui, K., Sun, T., Kang, B., Zhang, D., Zhao, C., Liu, C., Shu, Z., Sun, Y., Huang, B., Chai, R., Zhao, T., & Zhang, X. (2018). A comparative analysis of aerosol microphysical, optical and radiative properties during the spring Festival Holiday over Beijing and surrounding regions. Aerosol and Air Quality Research, 18, 1774–1787.

    Article  CAS  Google Scholar 

  • Zong, Z., Wang, X., Tian, C., Chen, Y., Fu, S., Qu, L., Ji, L., Li, J., & Zhang, G. (2018). PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmospheric Research, 203, 207–215.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21806183 and 51808549).

Author information

Authors and Affiliations

Authors

Contributions

LL: Conceptualization, Methodology, Investigation, Writing- Original draft preparation, LL and WW: Funding acquisition. LL, LZ and HC: Data curation. LL, WW, JJ, XM, and CS: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Wei Wen.

Ethics declarations

Conflicts of interest

The author declares that they have no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Animal research

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, L., Wen, W. et al. Chemical composition, oxidative potential and identifying the sources of outdoor PM2.5 after the improvement of air quality in Beijing. Environ Geochem Health 45, 1537–1553 (2023). https://doi.org/10.1007/s10653-022-01275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01275-z

Keywords

Navigation