Skip to main content

Advertisement

Log in

Level, distribution, ecological, and human health risk assessment of heavy metals in soils and stream sediments around a used-automobile spare part market in Nigeria

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The aim of this research was to assess the distribution, sources, contamination status, ecological risk, and human health risk of heavy metals (HMs) in soil and sediments of a used-automobile spare part market in Nigeria. Forty-three (43) soil samples were collected within a spare part market section (SPMS-17 samples), market-residential section (MRES-10 samples), traffic section (TRAS-10 samples), and non-market residential section (NMRS- 6 samples). Fifteen (15) stream sediments were collected within and around SPMS. Based on average concentrations, HMs (As, Cd, Cr, Cu, Fe, Mo, Pb, and Zn) had their highest values in SPMS, and their minimum values were observed in NMRS. The high concentration was as a result of contributions from anthropogenic activities such as the direct discharge of used-lubricant oil, scrap metals, tire wear, and traffic emission in the environment. However, Al, Co, and Mn were derived from the geology of the area. The same trend was observed in the stream sediment section (STSS), except that in addition to Al, Co and Mn in soils, Cr was also sourced from geogenic activity. There were moderate to high enrichment/contamination factors of the anthropogenically sourced HMs, especially in the soil of SPMS, MRES, TRAS and stream sediments (STSS). Similarly, high potential ecological risk (Eri) and ecological risks (RI) were observed for As, Pb, and Cd in SPMS and STSS, while these were moderate in MRES and TRAS. Assessment of health risks was within acceptable limit for most of the HMs in the different sections for both adults and children, except As, Cd, and Pb in SPMS and STSS, which were beyond the acceptable limit for children. The carcinogenic risk was within the acceptable limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajayi, T. R. (1981). Statistical analysis of stream sediment data from the Ife-Ilesha area of southwest Nigeria. Journal of Geochemical Exploration, 15(1981), 539–548.

    Article  CAS  Google Scholar 

  • Adedeji, O. H., Olayinka, O. O., Tope-Ajayi, O. O., & Adekoya, A. S. (2019). Assessing spatial distribution, potential ecological and human health risks of soil heavy metals contamination around a Trailer Park in Nigeria. Scientific African, 10(2020), e00650.

    Google Scholar 

  • Alonso Castillo, M. L., Sanchez Trujillo, I., Vereda Alonso, E., Garcia de Torres, A., & Cano Pavon, J. M. (2013). Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Malaga Bay, Region of Andalucia, Southern Spain). Marine Pollution Bulletin, 76, 427–434.

    Article  CAS  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2012). Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area India. Environmental Monitoring and Assessment, 2012(184), 4191–4206. https://doi.org/10.1007/s10661-011-2255-8

    Article  CAS  Google Scholar 

  • Armid, A., Shinjo, R., Zaeni, A., Sani, A., & Ruslan, R. (2014). The distribution of heavy metals including Pb, Cd and Cr in Kendari Bay surficial sediments. Marine Pollution Bulletin, 84, 373–378.

    Article  CAS  Google Scholar 

  • Ashraf, S., Rizvi, N. B., Rasool, A., Mahmud, T., Huang, G. G., & Zulfajri, M. (2020). Evaluation of heavy metal ions in the groundwater samples from selected automobile workshop areas in northern Pakistan. Groundwater for Sustainable Development, 11, 100428.

    Article  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.

    Article  CAS  Google Scholar 

  • Benninger, L. K., Lewis, D. M., & Turekian, K. K. (1975). The use of natural Pb-210 as a heavy metal tracer in the river-estuarine system. ACS Symposium Series, 18, 201–210.

    Google Scholar 

  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187, 1–14.

    Article  Google Scholar 

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6, e04691.

    Article  CAS  Google Scholar 

  • Bruce, P., Sobek, A., Ohlsson, Y., & Bradshaw, C. (2021). Risk assessments of contaminated sediments from the perspective of weight of evidence strategies –a Swedish case study. Human and Ecological Risk Assessment: An International Journal, 27(5), 1366–1387. https://doi.org/10.1080/10807039.2020.1848414

    Article  CAS  Google Scholar 

  • Čakmak, D., Perović, V., Antić-Mladenović, S., Kresović, M., Saljnikov, E., Mitrović, M., & Pavlović, P. (2018). Contamination, risk, and source apportionment of potentially toxic microelements in river sediments and soil after extreme flooding in the Kolubara River catchment in Western Serbia. Journal of Soils and Sediments, 18, 1981–1993. https://doi.org/10.1007/s11368-017-1904-0

    Article  CAS  Google Scholar 

  • Čakmak, D., Perović, V., Kresović, M., Pavlović, D., Pavlović, M., Mitrović, M., & Pavlović, P. (2020). Sources and a health risk assessment of potentially toxic elements in dust at children’s playgrounds with artificial surfaces: A case studyin belgrade. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-019-00702-0

    Article  Google Scholar 

  • D’ Hoore, L. J. (1964). Soil Map of Africa, CCTA Publisher Lagos. 214.

  • Decena, C. P., Arguelles, M. S., & Robel, L. L. (2018). Assessing heavy metal contamination in surface sediments in an Urban River in the Philippines Syrus. Polish Journal of Environmental Studies, 27, 1983–1995.

    Article  CAS  Google Scholar 

  • Duodu, G. O., Goonetilleke, A. G., & Ayoko, A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 2016, 1–15.

    Google Scholar 

  • Durán, I., Sánchez-Marín, P., & Beiras, R. (2012). Dependence of Cu, Pb and Zn remobilization on physicochemical properties of marine sediments. Marine Environment Research, 77, 43–49.

    Article  Google Scholar 

  • Erel, Y. (1998). Mechanisms and velocities of anthropogenic Pb migration in Mediterranean soils. Environ Res A, 78, 112–117.

    Article  CAS  Google Scholar 

  • Fajemila, O. T., Martínez-Colón, M., Sariaslan, N., Council, I. S., Kolawole, T. O., & Langer, M. R. (2022). Contamination levels of potentially toxic elements and foraminiferal distribution patterns in Lagos Lagoon: A correlation analysis. Water, 14, 37.

    Article  CAS  Google Scholar 

  • Friedland, A. J., & Johnson, A. H. (1985). Lead distribution and fluxes in a high-elevation forest in Northern Vermont. Journal of Environmental Quality, 14, 332–336.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Hopkins, B. (1965). Forest and Savannah (p. 38). Heinneman Publ.

    Google Scholar 

  • Huo, S., Zhang, J., Yeage, K. M., Xi, B., Qin, Y., He, Z., & Wu, F. (2015). Mobility and sulfidization of heavy metals in sediments of a shallow eutrophic lake, Lake Taihu, China. Journal of Environmental Sciences, 31, 1–11.

    Article  CAS  Google Scholar 

  • Ibe, F. C., Opara, A. I., & Ibe, B. O. (2020). Application of pollution risk evaluation models in groundwater systems in the vicinity of automobile scrap markets in Owerri municipal and environs, southeastern Nigeria. Scientific African, 8, e00450.

    Article  Google Scholar 

  • Iwegbue, C. M., ANwajei, G. E., Eguavoen, O., & Ogala, J. E., (2009). Chemical fractionation of some heavy metals in soil profiles in vicinity of scrap dumps in Warri, Nigeria, Chemical Speciation & Bioavailability, 21(2), 99–110. https://doi.org/10.3184/095422909X449490.

  • Jaradat, Q. M., Masadeh, A., Zaitoun, M. A., & Maitah, B. M. (2005). Heavy metal contamination of soil, plant and air of scrapyard of discarded vehicles at Zarqa City, Jordan. Soil and Sediment Contamination, 14(5), 449–462.

    Article  CAS  Google Scholar 

  • Jensen, D. L., Holm, P. E., & Christensen, T. H. (2001). Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities. Waste Management and Research, 2000(18), 52–63.

    Google Scholar 

  • Jia, Z., Li, S., & Wang, L. (2018). Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports, 8, 3256. https://doi.org/10.1038/s41598-018-21569-6

    Article  CAS  Google Scholar 

  • Kamari, A., Putra, W. P., Yusoff, S. N. M., Ishak, C. F., Hashim, N., Mohamed, A., Isa, I. M., & Bakar, S. A. (2015). Immobilisation of Cu, Pb and Zn in scrap metal yard soil using selected waste materials. Bulletin of environmental contamination and toxicology. https://doi.org/10.1007/s00128-015-1650-1

    Article  Google Scholar 

  • Katana, C., Jane, M., & Harun, M. (2013). Speciation of chromium and nickel in open-air automobile mechanic workshop soils in Ngara, Nairobi, Kenya. World Environment, 3, 143–154.

    Google Scholar 

  • Kolawole, T. O., Olatunji, A. S., Jimoh, M. T., & Fajemila, O. T. (2018). Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in southwestern Nigeria. Journal of Health and Pollution, 8(19), 180906.

    Article  Google Scholar 

  • Kolawole, T. O., Olatunji, O. S., Ajibade, O. M., & Oyelami, C. A. (2021). Sources and level of rare earth element contamination of atmospheric dust in Nigeria. Journal of Health and Pollution., 11(30), 210611.

    Article  Google Scholar 

  • Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X., & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272.

    Article  CAS  Google Scholar 

  • Madrid, L., Diaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49(2002), 1301–1308.

    Article  CAS  Google Scholar 

  • Mbuligwe, S. E., & Kassenga, G. R. (1997). Automobile air pollution in Dar es Salaam City, Tanzania. The Science of the Total Environment, 199(1997), 227–235.

    Article  CAS  Google Scholar 

  • McIlwaine, R., Doherty, R., Cox, S. F., & Cave, M. (2017). The relationship between historical development and potentially toxic element concentrations in urban soils. Environmental Pollution, 220, 1036–1049.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Nduka, J. K., Kelle, H. I., & Amuka, J. O. (2019). Health risk assessment of cadmium, chromium and nickel from car paint dust from used automobiles at auto-panel workshops in Nigeria. Toxicology Reports, 6, 449–456.

    Article  CAS  Google Scholar 

  • Nemerow, N. L. (1991). Stream, lake, estuary, and ocean pollution (p. 472). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Nwachukwu, M. A., Feng, H., & Alinnor, J. (2010). Trace metal dispersion in soil from auto-mechanic village to Urban residential areas in Owerri. Nigeria Procedia Environmental Sciences, 4, 310–322.

    Article  Google Scholar 

  • Odewande, A. A., & Abimbola, A. F. (2008). Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environmental Geochemistry and Health, 30, 243–254.

    Article  CAS  Google Scholar 

  • Okunlola, O. A., Adeigbe, O. C., Oluwatoke, O. O. (2009). Compositional and petrogenetic features of schistose rocks of Ibadan area, Southwestern Nigeria. Earth Sciences Research Journal, 13, 119–133.

  • Olatunji, A. S., Kolawole, T. O., Oloruntola, M., Günter, G. (2018). Evaluation of pollution of soils and particulate matter around metal recycling factories in southwestern Nigeria. J Health Pollution, 8, 20–30. https://doi.org/10.5696/2156-9614-8.17.20.

  • Olayinka, A. I., Abimbola, A. F., Isibor, R. A., & Rafiu A. R. (1999). A geoelectrical-hydrogeochemical investigation of shallow groundwater occurrence in Ibadan, southwestern Nigeria. Environmental Geology, 37(1–2), pp. 31–39. Available at: http://link.springer.com/https://doi.org/10.1007/s002540050357.

  • Ololade, I. A. (2014). An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. Journal of Environmental Protection, 5, 970–982.

    Article  Google Scholar 

  • Ondrácek, J., Schwarz, J., Zdímal, V., Andelová, L., Vodicka, P., Bízek, V., Tsai, C.-J., Chen, S.-C., & Smolik, J. (2011). Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmospheric Environment, 45(29), 5090–5100.

    Article  Google Scholar 

  • Onianwa, P. C., & Fakayode, S. O. (2000). Lead contamination of topsoil and vegetation in the Vicinity of a battery factory in Nigeria. Environmental Geochemistry and Health, 22, 211–218.

    Article  CAS  Google Scholar 

  • Onianwa, P. C., Jaiyeola, O. M., & Egekenze, R. N. (2001). Heavy metals contamination of Topsoil in the vicinities of auto-repair Workshops, gas stations and motorparks In a Nigerian City. Toxicological & Environmental Chemistry, 84, 33–39.

    Article  CAS  Google Scholar 

  • Pachana, K., Wattanakornsiri, A., & Nanuam, J. (2010). Heavy metal transport and fate in the environmental compartments. NU Science Journal, 7(1), 1–11.

    Google Scholar 

  • Pam, A. A., Ato, R. S., & Offem, J. O. (2013). Evaluation of heavy metals in soils around automechanic workshop clusters in Gboko and Makurdi, Central Nigeria. Journal of Environmental chemistry and ecotoxicology, 5, 298–306.

    CAS  Google Scholar 

  • Pavlović, D., Pavlović, M., Čakmak, D., Kostić, O., Jarić, S., Sakan, S., Đorđević, D., Mitrović, M., Gržetić, I., & Pavlović, P. (2018). Fractionation, mobility and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities. Archives of Environmental Contamination and Toxicology, 75, 335–350.

    Article  Google Scholar 

  • Pavlović, D., Pavlović, M., Perović, V., Mataruga, Z., Čakmak, D., Mitrović, M., & Pavlović, P. (2021). Chemical fractionation, environmental, and human health risk assessment of potentially toxic elements in soil of industrialised urban areas in Serbia. International Journal of Environmental Research and Public Health, 18, 9412. https://doi.org/10.3390/ijerph18179412

    Article  CAS  Google Scholar 

  • Pavlović, M., Pavlović, D., Kostić, O., Jarić, S., Čakmak, D., Pavlović, P., & Mitrović, M. (2017). Evaluation of urban contamination with trace elements in city parks in Serbia using pine (Pinus nigra Arnold) needles, bark and urban topsoil. International Journal of Environmental Research, 11, 625–639.

    Article  Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19, 230–241.

    Article  Google Scholar 

  • Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis. Cambridge: Royal Society of Chemistry.

    Book  Google Scholar 

  • Radziemska, M., Koda, E., Vaverkovà, M. D., Gusiatin, Z. M., Cerdà, A., Brtnický, M., & Mazur, Z. (2018). Soils from an iron and steel scrap storage yard remediated with aided phytostabilization. Land Degradation and Development, 2018, 1–10.

    Google Scholar 

  • Sadick, A., Amfo-Otu, R., Acquah, S. J., Nketia, K. A., Asamoah, E., & Adjei, E. O. (2015). Assessment of heavy metal contamination in soils around auto mechanic workshop clusters in central agricultural station, Kumasi-Ghana. Applied Research Journal, 1(2), 12–19.

    Google Scholar 

  • SanMiguel, G., Fowler, G. D., & Sollars, C. J. (2002). The leaching of inorganic species from activated carbons produced from waste tyre rubber. Water Research, 36, 1939–1946.

    Article  CAS  Google Scholar 

  • Shakya, P. R., Shrestha, P., Tamrakar, C. S., & Bhattarai, P. K. (2006). Studies and determination of heavy metals in waste tyres and their impacts on the environment. Pakistan Journal of Analytical & Environmental Chemistry, 7, 70–76.

    Google Scholar 

  • Sharma, S., & Prasad, F. M. (2010). Accumulation of lead and cadmium in soil andvegetable crops along major highways in Agra (India). E-journal of Chemistry, 7(4), 1174–1183.

    Article  CAS  Google Scholar 

  • Smyth, A. J., & Montgomerry, R. F. (1962). Soils and Land use in Central Western Nigeria, Ibadan: Government Printer.

  • Solgi, E., Roohi, N., & Kouroshi-Gholampou, M. (2016). A comparative study of metals in roadside soils and urban parks from Hamedan metropolis Iran. Environmental Nanotechnology, Monitoring & Management, 6, 169–175.

    Article  Google Scholar 

  • Stout, S. A., Litman, E., & Blue, D. (2018). Metal concentrations in used engine oils: Relevance to site assessments of soils. Environmental Forensics. https://doi.org/10.1080/15275922.2018.1474288

    Article  Google Scholar 

  • Sucharovà, J., Suchara, I., Hola, M., Marikova, S., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2012). Top-/bottom-soil ratios and enrichment factors: What do they really show? Applied Geochemistry, 27(2012), 138–145.

    Article  Google Scholar 

  • Sun, R., Yang, J., Xia, P., Wu, S., Lin, T., & Yi, Y. (2020). Contamination features and ecological risks of heavy metals in 1 the farmland along shoreline of Caohai plateau wetland, China. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126828

    Article  Google Scholar 

  • Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang. China. J. Hazard. Mater., 174, 455–462.

    Article  CAS  Google Scholar 

  • Superville, P. J., Prygiel, E., Magnier, A., Lesven, L., Gao, Y., Baeyens, W., Baeyens, W., Ouddane, B., Dumoulin, D., & Billon, G. (2014). Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments. Science of the Total Environment, 470–471, 600–607.

    Article  Google Scholar 

  • Tijani, M. N., Okunlola, O. A., & Abimbola, A. F. (2006). Lithogenic concentrations of trace metals in soils and saprolites over crystalline basement rocks: A case study from SW Nigeria. Journal of African Earth Sciences, 46(5), 427–438.

    Article  CAS  Google Scholar 

  • Tyler, G. (1978). Leaching rates of heavy metal ions in forest soils. Water, Air, and Soil Pollution, 9, 137–148.

    Article  CAS  Google Scholar 

  • Turner, R. S., Johnson, A. H., & Wang, D. (1985). Biogeochemistry of lead in McDonald’s Branch watershed, New Jersey Pine Barrens. Journal of Environmental Quality, 14, 305–314.

    Article  CAS  Google Scholar 

  • USDOE. (2011). The risk assessment information system (RAIS). Cass Avenue Argonne, IL: U.S. Department of Energy’s Oak Ridge Operations Office (ORO).

  • USEPA. (1989). Risk assessment guidance for superfund, vol I., Human health evaluation manual (Part A) Office of Emergency and Remedial Response, Washington, DC.

  • Ustaoğlu, F., & Islam, Md. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113(2020), 106237.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003

  • Walraven, N., van Gaans, P. F. M., van der Veer, G., van Os, B. J. H., Klaver, GTh., Vriend, S. P., et al. (2013). Tracing diffuse anthropogenic Pb sources in rural soils bymeans of Pb isotope analysis. Applied Geochemistry, 37, 242–257.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16. https://doi.org/10.1016/j.envpol.2005.09.004

    Article  CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., Zhou, S., Yang, G., Wana, H., & Wu, L. (2015). Levels and health risk assessments of heavy metals in urban soilsin Dongguan China. Journal of Geochemical Exploration, 148, 71–78.

    Article  CAS  Google Scholar 

  • Yang, J. L., & Zhang, G. L. (2015). Formation characteristics and ecoenvironmental implications of urban soils –A review. Soil Science and Plant Nutrition, 61, 30–46.

    Article  CAS  Google Scholar 

Download references

Funding

We declare that there is no external fund received for this research.

Author information

Authors and Affiliations

Authors

Contributions

TOK, the first and corresponding author designed the study, took part in the fieldwork, data analysis, data interpretation, and wrote the manuscript, while OMA, the second author also took part in designing this work, the fieldwork, and manuscript review and JOO-K, the third author took part in the manuscript review. KWF, assisted in the data interpretation, reviewing the manuscript as requested by the reviewers, and in the performance and validations of human health risk assessment results.

Corresponding author

Correspondence to T. O. Kolawole.

Ethics declarations

Conflict of interest

We declare no competing interest.

Consent to participate

All the co-authors approved their participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolawole, T.O., Ajibade, O.M., Olajide-Kayode, J.O. et al. Level, distribution, ecological, and human health risk assessment of heavy metals in soils and stream sediments around a used-automobile spare part market in Nigeria. Environ Geochem Health 45, 1573–1598 (2023). https://doi.org/10.1007/s10653-022-01283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01283-z

Keywords

Navigation