Skip to main content
Log in

Baseline sensitivity of penthiopyrad against Colletotrichum gloeosporioides species complex and its efficacy for the control of Colletotrichum leaf disease in rubber tree

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Colletotrichum leaf disease (CLD), mainly caused by the Colletotrichum gloeosporioides species complex (CGSC), is a serious disease of rubber tree in most rubber-growing countries. Few fungicides are available for rubber farmers to manage this disease. To control CLD effectively, it is important to test the baseline sensitivity and efficacy of fungicides against CGSC isolates. Penthiopyrad is a new succinate dehydrogenase inhibitor (SDHI) that has been registered for use in many countries. In this study, baseline sensitivity to penthiopyrad was established by mycelial growth methods using 91 CGSC isolates collected from rubber trees in China. The EC50 values of penthiopyrad ranged from 0.243 to 3.377 mg/L with a mean EC50 value of 1.685 mg/L. Penthiopyrad greatly decreased the mycelial biomass and increased cell membrane permeability of CGSC isolates. The mycelia were severely distorted, and the number of top branches increased with penthiopyrad treatment. Penthiopyrad inhibited succinate dehydrogenase activity, causing a decrease in the ATP content of CGSC isolates, and significantly inhibited conidia germination and appressorium formation on rubber tree leaves. The protective and curative efficacy of 100 mg/L penthiopyrad reached up to 98.53% and 66.79% against CLD, respectively. Our results demonstrated the high inhibitory activity of penthiopyrad against CGSC isolates and its potential for CLD management on rubber tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An, X. H., Jiang, X. F., Wang, J. H., Wu, C. X., & Zhao, X. P. (2015). Potential dermal exposure and risk assessment for applicators of chlorothalonil and chlorpyrifos in cucumber greenhouses in China. Human and Ecological Risk Assessment, 21, 972–985.

    Article  CAS  Google Scholar 

  • Avenot, H. F., van den Biggelaar, H., Morgan, D. P., Moral, J., Joosten, M., & Michailides, T. J. (2014). Sensitivities of baseline isolates and boscalid-resistant mutants of Alternaria alternata from pistachio to fluopyram, penthiopyrad, and fluxapyroxad. Plant Disease, 98, 197–205.

    Article  CAS  Google Scholar 

  • Cai, Z. Y., Liu, Y. X., Shi, Y. P., Mu, H. J., & Li, G. H. (2016). First report of leaf anthracnose caused by Colletotrichum karstii of rubber tree in China. Plant Disease, 100, 2528.

    Article  Google Scholar 

  • Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum–current status and future directions. Studies in Mycology, 73, 181–213.

    Article  CAS  Google Scholar 

  • Cao, X. R., Xu, X. M., Che, H. Y., West, J. S., & Luo, D. Q. (2017). Distribution and fungicide sensitivity of Colletotrichum species complexes from rubber tree in Hainan, China. Plant Disease, 101, 1774–1780.

    Article  CAS  Google Scholar 

  • Culbreath, A. K., Brenneman, T. B., Kemerait, R. C. Jr., & Hammes, G. G. (2009). Effect of the new pyrazole carboxamide fungicide penthiopyrad on late leaf spot and stem rot of peanut. Pest Management Science, 65, 66–73.

    Article  CAS  Google Scholar 

  • De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., & Taylor, P. W. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31, 155–168.

    Article  Google Scholar 

  • Fungicide Resistance Action Committee. (2019). FRAC Code List 2019: Fungal control agents sorted by cross resistance pattern and mode of action. https://www.frac.info/docs/default-source/publications/pathogen-risk/frac-pathogen-list-2019.pdf?sfvrsn=caf3489a_2. Accessed 22 Jul 2020.

  • Guyot, J., Omanda, E. N., & Pinard, F. (2005). Some epidemiological investigations on Colletotrichum leaf disease on rubber tree. Crop Protection, 24, 65–77.

    Article  Google Scholar 

  • Hou, Y. P., Mao, X. W., Lin, S. P., Song, X. S., Duan, Y. B., Wang, J. X., & Zhou, M. G. (2018a). Activity of a novel succinate dehydrogenase inhibitor fungicide pyraziflumid against Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 145, 22–28.

    Article  CAS  Google Scholar 

  • Hou, Y. P., Chen, Y. L., Wu, L. Y., Wang, J. X., Chen, C. J., & Zhou, M. G. (2018b). Baseline sensitivity of Bipolaris maydis to the novel succinate dehydrogenase inhibitor benzovindiflupyr and its efficacy. Pesticide Biochemistry and Physiology, 149, 81–88.

    Article  CAS  Google Scholar 

  • Hu, M. J., Fernández-Ortuño, D., & Schnabel, G. (2016). Monitoring resistance to SDHI fungicides in Botrytis cinerea from strawberry fields. Plant Disease, 100, 959–965.

    Article  CAS  Google Scholar 

  • Huang, X. P., Luo, J., Li, B. X., Song, Y. F., Mu, W., & Liu, F. (2019). Bioactivity, physiological characteristics and efficacy of the SDHI fungicide pydiflumetofen against Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 160, 70–78.

    Article  CAS  Google Scholar 

  • Ishii, H., Zhen, F., Hu, M., Li, X., & Schnabel, G. (2016). Efficacy of SDHI fungicides, including benzovindiflupyr, against Colletotrichum species. Pest Management Science, 72, 1844–1853.

    Article  CAS  Google Scholar 

  • Jayasinghe, C. K., & Fernando, T. (1998). Growth at different temperatures and on fungicide amended media: two characteristics to distinguish Colletotrichum species pathogenic to rubber. Mycopathologia, 143, 93–95.

    Article  CAS  Google Scholar 

  • Kamoun, S., Furzer, O., Jones, J. D., Judelson, H. S., Ali, G. S., Dalio, R. J., Roy, S. G., Schena, L., Zambounis, A., Panabieres, F., Cahill, D., Ruocco, M., Figueiredo, A., Chen, X. R., Hulvey, J., Stam, R., Lamour, K., Gijzen, M., Tyler, B. M., Grunwald, N. J., Mukhtar, M. S., Tome, D. F., Tor, M., Van Den Ackerveken, G., McDowell, J., Daayf, F., Fry, W. E., Lindqvist-Kreuze, H., Meijer, H. J., Petre, B., Ristaino, J., Yoshida, K., Birch, P. R., & Govers, F. (2015). The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 16, 413–434.

    Article  Google Scholar 

  • Kim, Y. S., Min, J. Y., Kang, B. K., Van Bach, N., Choi, W. B., Park, E. W., & Kim, H. T. (2007). Analyses of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. The Plant Pathology Journal, 23, 187–192.

    Article  Google Scholar 

  • Liu, X. B., Li, B. X., Cai, J. M., Zheng, X. L., Feng, Y. L., & Huang, G. X. (2018). Colletotrichum species causing anthracnose of rubber trees in China. Scientific Reports, 8, 10435.

    Article  Google Scholar 

  • Malinsky, J., Opekarová, M., Grossmann, G., & Tanner, W. (2013). Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annual Review of Plant Biology, 64, 501–529.

    Article  CAS  Google Scholar 

  • Oikawa, K., Iizuka, K., Murakami, T., Nagai, T., Okita, K., Yonezawa, K., & Kawaguchi, H. (2004). Pure pressure stress increased monocarboxylate transporter in human aortic smooth muscle cell membrane. Molecular and Cellular Biochemistry, 259, 151–156.

    Article  CAS  Google Scholar 

  • Peres, N. A. R., Souza, N. L., Peever, T. L., & Timmer, L. W. (2004). Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Disease, 88, 125–130.

    Article  CAS  Google Scholar 

  • Priyadarshan, P. M., & Goncalves, P. D. S. (2003). Hevea gene pool for breeding. Genetic Resources and Crop Evolution, 50, 101–114.

    Article  CAS  Google Scholar 

  • Sierotzki, H., & Scalliet, G. (2013). A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology, 103, 880–887.

    Article  CAS  Google Scholar 

  • Tang, C. R., Yang, M., Fang, Y. J., Luo, Y. F., Gao, S. H., Xiao, X. H., An, Z. W., Zhou, B. H., Zhang, B., Tan, X. Y., Yeang, H. Y., Qin, Y. X., Yang, J. H., Lin, Q., Mei, H. L., Montoro, P., Long, X. Y., Qi, J. Y., Hua, Y. W., He, Z. L., Sun, M., Li, W. J., Zeng, X., Cheng, H., Liu, Y., Yang, J., Tian, W. M., Zhuang, N. S., Zeng, R. Z., Li, D. J., He, P., Li, Z., Zou, Z., Li, S. L., Li, C. J., Wang, J. X., Wei, D., Lai, C. Q., Luo, W., Yu, J., Hu, S. N., & Huang, H. S. (2016). The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants, 2, 16073.

    Article  CAS  Google Scholar 

  • Vitale, A., Panebianco, A., & Polizzi, G. (2016). Baseline sensitivity and efficacy of fluopyram against Botrytis cinerea from table grape in Italy. Annals of Applied Biology, 169, 36–45.

    Article  CAS  Google Scholar 

  • Wang, J., Bradley, C. A., Stenzel, O., Pedersen, D. K., Reuter-Carlson, U., & Chilvers, M. I. (2017). Baseline sensitivity of Fusarium virguliforme to fluopyram fungicide. Plant Disease, 101, 576–582.

    Article  CAS  Google Scholar 

  • Wang, Y., Sun, Y., Xiong, Z., He, K., Feng, J. T., & Zhang, X. (2018). Baseline sensitivity and biochemical responses of Valsa mali to propamidine. Pesticide Biochemistry and Physiology, 147, 90–95.

    Article  CAS  Google Scholar 

  • Wastie, R. L., & Janardhanan, P. S. (1970). Pathogenicity of Colletotrichum gloeosporioides, C. dematium and C.crassipes to leaves of Hevea brasiliensis. Transactions of the British Mycological Society, 54, 150–152.

  • Weir, B., Johnston, P., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180.

    Article  CAS  Google Scholar 

  • Wikee, S., Cai, L., Pairin, N., McKenzie, E. H. C., Su, Y. Y., Chukeatirote, E., Thi, H. N., Bahkali, A. H., Moslem, M. A., & Abdelsalam, K. (2011). Colletotrichum species from Jasmine (Jasminum sambac). Fungal Divers, 46, 171–182.

    Article  Google Scholar 

  • Wong, F. P., & Midland, S. L. (2007). Sensitivity distributions of California populations of Colletotrichum cereale to the DMI fungicides propiconazole, myclobutanil, tebuconazole, and triadimefon. Plant Disease, 91, 1547–1555.

    Article  CAS  Google Scholar 

  • Xu, C., Li, M. X., Zhou, Z. H., Li, J. S., Chen, D. M., Duan, Y. B., & Zhou, M. G. (2019). Impact of five succinate dehydrogenase inhibitors on DON biosynthesis of Fusarium asiaticum, causing fusarium head blight in wheat. Toxins, 11, 272.

    Article  CAS  Google Scholar 

  • Xu, C. Y., Liang, X. Y., Hou, Y. P., & Zhou, M. G. (2015). Effects of the novel fungicide benzothiostrobin on Sclerotinia sclerotiorum in the laboratory and on Sclerotinia stem rot in rape fields. Plant Disease, 99, 969–975.

    Article  CAS  Google Scholar 

  • Zainuddin, R. N., & Omar, M. (1988). Influence of the leaf surface of Hevea on activity of Colletotrichum gloeosporioides. Transactions of the British Mycological Society, 91, 427–432.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Applied Basic Research Programs of Department of Science and Technology of Hainan Province (2019RC162) and the Modern Agro-industry Technology Research System (CARS-33-BC1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. 

Human and animals rights

No human and/or animal participants were involved in this research.

Informed consent

All authors are consent to this submission.

Electronic supplementary material

ESM 1

(DOCX 11.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Peng, Y., Zou, L. et al. Baseline sensitivity of penthiopyrad against Colletotrichum gloeosporioides species complex and its efficacy for the control of Colletotrichum leaf disease in rubber tree. Eur J Plant Pathol 158, 965–974 (2020). https://doi.org/10.1007/s10658-020-02130-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02130-6

Keywords

Navigation