Skip to main content

Advertisement

Log in

PsGRGH, a TOS1 family-like gene, is involved in the vegetative growth, environmental stress response, and pathogenicity of Phytophthora sojae

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Phytophthora sojae can cause soybean phytophthora blight, and greatly reduce soybean production. It is helpful to understand the pathogenic mechanism of P. sojae to prevent soybean phytophthora blight and ensures food security. Glycosyl hydrolases (GHs) disintegrate plant cell walls for nutrition and invasion, and they may act as an important virulence factor during P. sojae infection. To reveal the role of GHs in the main stages of P. sojae life cycle, we measured the expression level of genes, which encoded GHs, and constructed P. sojae transformants for biological function verification by the gene editing technology CRISPR-Cas9. In this study, four genes, encoded special GH proteins, with conserved glycine-rich were identified in the P. sojae genome, and their sequences were similar to those of the TOS1 family genes. One of them, the xp_009520987.1, was named PsGRGH, and was significantly upregulated during the germination of spores and in the early infection stages. The results revealed that PsGRGH was involved in the growth and mycelial morphology regulation in P. sojae, and was essential for its sporangium development and virulence. In addition, PsGRGH is localized on the cell membrane and plays an important role in tolerance toward Bacillus and abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adhikari, B. N., Hamilton, J. P., Zerillo, M. M., Tisserat, N., Lévesque, C. A., & Buell, C. R. (2013). Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One, 8(10), e75072–e75087.

    Article  CAS  Google Scholar 

  • Ah-Fong, A. M., Kim, K. S., & Judelson, H. S. (2017). RNA-seq of life stages of the oomycete Phytophthora infestans reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a major role for calcium signaling in development. BMC Genomics, 18(1), 198–219.

    Article  Google Scholar 

  • Amitai, G., & Sorek, R. (2016). CRISPR-Cas adaptation: Insights into the mechanism of action. Nature Reviews Microbiology, 14, 67–76.

    Article  CAS  Google Scholar 

  • Blackman, L. M., Cullerne, D. P., & Hardham, A. R. (2014). Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics, 15(1), 785–809.

    Article  Google Scholar 

  • Brouwer, H., Coutinho, P. M., Henrissat, B., & de Vries, R. P. (2014). Carbohydrate-related enzymes of important phytophthora plant pathogens. Fungal Genetics and Biology, 72, 192–200.

    Article  CAS  Google Scholar 

  • Chang, Y. H., Yan, H. Z., & Liou, R. F. (2015). A novel elicitor protein from, Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Molecular Plant Pathology, 16(2), 123–136.

    Article  CAS  Google Scholar 

  • Chen, X. R., Xing, Y. P., Li, Y. P., Tong, Y. H., & Xu, J. Y. (2018). RNA-Seq reveals infection-related gene expression changes in Phytophthora capsici. PLoS One, 8, e74588–e74603.

    Article  Google Scholar 

  • Cheng, W., Lin, M., Qiu, M., Kong, L., Xu, Y., Li, Y., Wang, Y., Ye, W. W., Dong, S. M., He, S. L., & Wang, Y. C. (2019). Chitin synthase is involved in vegetative growth, asexual reproduction and pathogenesis of Phytophthora capsici and Phytophthora sojae. Environmental Microbiology, 21(12), 4537–4547.

    Article  CAS  Google Scholar 

  • Costa, R., Domínguez, A., & Choupina, A. (2020). Cloning and expression analysis of an endo-1, 3-β-d-glucosidase from Phytophthora cinnamomi. Molecular Biology Reports, 47(2), 935–942.

    Article  CAS  Google Scholar 

  • Fang, Y., & Tyler, B. M. (2016). Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Molecular Plant Pathology, 17(1), 127–139.

    Article  CAS  Google Scholar 

  • Fang, Y., Cui, L., Gu, B., Arredondo, F., & Tyler, B. M. (2017). Efficient genome editing in the oomycete Phytophthora sojae using CRISPR/Cas9. Current Protocols in Microbiology, 44(1), 21A-1.

    Article  Google Scholar 

  • Gao, J., Cao, M. N., Ye, W. W., Li, H. Y., Kong, L., Zheng, X. B., & Wang, Y. C. (2015). PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean. Molecular Plant Pathology, 16, 61–70.

    Article  CAS  Google Scholar 

  • Grams, N., & Ospina-Giraldo, M. (2019). Increased expression of Phytophthora sojae genes encoding membrane-degrading enzymes appears to suggest an early onset of necrotrophy during Glycine max infection. Fungal Genetics and Biology, 133, 103268–103271.

    Article  Google Scholar 

  • Grams, N., Komar, H., Jainchill, D., & Ospina-Giraldo, M. (2019). Comparative expression analysis of Phytophthora sojae polysaccharide lyase family 3 (pectate lyase) genes during infection of the soybean Glycine max. Phytopathology Research, 1(1), 1–15.

    Article  Google Scholar 

  • Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278.

    Article  CAS  Google Scholar 

  • Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M., & Brown, P. O. (2001). Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409(6819), 533–538.

    Article  CAS  Google Scholar 

  • Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., & Muller, J. (2009). STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37, 412–416.

    Article  Google Scholar 

  • Lai, M. W., & Liou, R. F. (2018). Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica. Current Genetics, 64(4), 931–943.

    Article  CAS  Google Scholar 

  • Li, A., Wang, Y., Tao, K., Dong, S.M, Huang, Q., Dai, T., Zheng, X. B. & Wang, Y.C. (2010) PsSAK1, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean. Molecular Plant-Microbe Interactions, 23, 1022–1031.

  • Lin, L., Ye, W. W., Wu, J., Xuan, M., Li, Y., Gao, J., & Wang, Y. C. (2018). The MADS-box transcription factor PsMAD1 is involved in zoosporogenesis and pathogenesis of Phytophthora sojae. Frontiers in Microbiology, 9, 2259.

    Article  Google Scholar 

  • Liu, D., Li, P., Hu, J., Li, K. Y., Zhao, Z. Y., Wang, W. Y., & Gao, Z. M. (2018). Genetic diversity among isolates of Phytophthora sojae in Anhui Province of China based on ISSR-PCR markers. Journal of the American Society for Horticultural Science, 143(4), 304–309.

    Article  Google Scholar 

  • Liu, D., Li, K., Hu, J., Wang, W., Liu, X., & Gao, Z. (2019). Biocontrol and action mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in soybean Phytophthora blight. International Journal of Molecular Sciences, 20(12), 2908.

    Article  CAS  Google Scholar 

  • Ma, Z. C., Song, T., Zhu, L., Ye, W. W., Wang, Y., Shao, Y. Y., Dong, S. M., Zhang, Z. G., Dou, D. L., Zheng, X. B., Tyler, B. M., & Wang, Y. C. (2015). A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell, 27(7), 2057–2072.

    Article  CAS  Google Scholar 

  • Pan, Y. M., Ye, T., & Gao, Z. M. (2017). Cloning and functional analysis of succinate dehydrogenase gene PsSDHA in Phytophthora sojae. Microbial Pathogenesis, 108, 40–48.

    Article  CAS  Google Scholar 

  • Pan, Y., Ye, T., & Gao, Z. (2018). The succinate dehydrogenase PsSDHB is involved in hyphal morphology, chemical stress response and pathogenicity of Phytophthora sojae. Physiological and Molecular Plant Pathology, 102, 8–16.

    Article  CAS  Google Scholar 

  • Shen, D., Wang, J., Dong, Y., Zhang, M., Tang, Z., & Xia, Q. (2020). The glycoside hydrolase 18 family chitinases are associated with development and virulence in the mosquito pathogen Pythium guiyangense. Fungal Genetics and Biology, 135, 103290–103299.

    Article  CAS  Google Scholar 

  • Steczkiewicz, K., Knizewski, L., Rychlewski, L., & Ginalski, K. (2010). TOS1 is circularly permuted 1, 3-β-glucanase. Cell Cycle, 9(1), 201–204.

    Article  CAS  Google Scholar 

  • Sternberg, S. H., Richter, H., Charpentier, E., & Qimron, U. (2016). Adaptation in CRISPR-Cas systems. Molecular Cell, 61(6), 797–808.

    Article  CAS  Google Scholar 

  • Toljamo, A., Blande, D., Munawar, M., Kärenlampi, S. O., & Kokko, H. (2019). Expression of the GAF sensor, carbohydrate-active enzymes, elicitins, and RXLRs differs markedly between two Phytophthora cactorum isolates. Phytopathology, 109(5), 726–735.

    Article  CAS  Google Scholar 

  • Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P. S., Jiang, R. H., & Aerts, A. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science, 313(5791), 1261–1266.

    Article  CAS  Google Scholar 

  • Viborg, A. H., Terrapon, N., Lombard, V., Michel, G., Czjzek, M., & Henrissat, B. (2019). A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). Journal of Biological Chemistry, 294(44), 15973–15986.

    Article  CAS  Google Scholar 

  • Wang, Y., & Wang, Y. (2018). Phytophthora sojae, effectors orchestrate warfare with host immunity. Current Opinion in Microbiology, 46, 7–13.

    Article  Google Scholar 

  • Wang, Y., Dou, D., Wang, X., Li, A., Sheng, Y., Hua, C., & Wang, Y. C. (2009). The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae. Microbial Pathogenesis, 47(2), 78–86.

    Article  Google Scholar 

  • Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry, 85, 227–264.

    Article  CAS  Google Scholar 

  • Wang, T. H., Wang, X. W., Zhu, X. Q., He, Q., & Guo, L. Y. (2020). A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans. Molecular Plant Pathology, 1, 1–15.

    Google Scholar 

  • Ye, W. W., Wang, X. L., Tao, K., Lu, Y. P., Dai, T. T., Dong, S. M., & Wang, Y. C. (2011). Digital gene expression profiling of the Phytophthora sojae transcriptome. Molecular Plant-Microbe Interactions, 24(12), 1530–1539.

    Article  CAS  Google Scholar 

  • Yin, Q. Y., De Groot, P. W., Dekker, H. L., De Jong, L., Klis, F. M., & De Koster, C. G. (2005). Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: Identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. Journal of Biological Chemistry, 280(21), 20894–20901.

    Article  CAS  Google Scholar 

  • Yu, X. L., Tang, J. L., Wang, Q. Q., Ye, W. W., Tao, K., Duan, S. Y., & Wang, Y. C. (2012). The rxlr effector avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. New Phytologist, 196(1), 247–260.

    Article  CAS  Google Scholar 

  • Zhang, C., Cui, T. S., Zhang, F., Xue, Z. L., Miao, J. Q., Wang, Z. W., & Liu, X. L. (2020). Identification of differentially activated pathways in Phytophthora sojae at the mycelial, cyst, and oospore stages by TMT-based quantitative proteomics analysis. Journal of Proteomics, 221, 103776.

    Article  CAS  Google Scholar 

  • Zhao, W., Dong, S., Ye, W., Hua, C. C., Meijer, H. J. G., Dou, D. L., Zheng, X. B., & Wang, Y. C. (2011). Genome-wide identification of Phytophthora sojae SNARE genes and functional characterization of the conserved SNARE PsYKT6. Fungal Genetics and Biology, 48, 241–251.

    Article  CAS  Google Scholar 

  • Zuluaga, A. P., Vega-Arreguín, J. C., Fei, Z., Ponnala, L., Lee, S. J., & Matas, A. J. (2016). Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Molecular Plant Pathology, 17(1), 29–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2018YFD0201000), Excellent Young Talents Fund Program of Higher-Education Institutions of Anhui Province (Grant No. gxyqZD2018120; Grant No. gxyqZD2016516), Quality Engineering Project of Anhui Province (Grant No. 2019dsgzs19), and the Natural Science Research Project of Colleges and Universities in Anhui Province (Grant No. KJ2020A1023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimou Gao.

Ethics declarations

Informed consent

The research involved no human participants, and no animals so that the statement on the welfare of animals is not required.

Research involving human participants and/or animals

Not applicable. The research involved no human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

ESM 1

(XLS 48 kb)

ESM 2

(XLS 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Li, K., Hu, J. et al. PsGRGH, a TOS1 family-like gene, is involved in the vegetative growth, environmental stress response, and pathogenicity of Phytophthora sojae. Eur J Plant Pathol 160, 67–79 (2021). https://doi.org/10.1007/s10658-021-02221-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02221-y

Keywords

Navigation