Skip to main content
Log in

Molecular diversity of Radopholus similis (Cobb 1913) Thorne (1949) (Nematoda: Pratylenchidae) affecting banana from Costa Rica

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Radopholus similis is one of the most important diseases in banana in tropical/subtropical regions worldwide. The knowledge of its molecular diversity in specific areas could help to understand its distribution, ways of expansion, control methods, differential pathogenicity, and sustainable plant breeding programs. This study explores the molecular diversity of R. similis in an extensive survey in banana plantations in Costa Rica using two molecular markers, one genomic (ITS region) and another mitochondrial (COI). The results showed a low molecular variability, being dominated by a prevalent haplotype in both markers. Three haplotypes have been detected for each molecular marker respectively. The haplotypes present in Costa Rica are similar to others found in other areas of Central America (Colombia, Panama) and these haplotypes are also distributed worldwide. These results suggested a unique or limited number of introductions of this pathogen in Central America and a possible expansion within the continent by infected plant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

R. similis GenBank accession number sequences: ON479314-ON479316 and ON479582-ON479584.

References

  • Becker, R. A., & Wilks, A. R. (2021). maps: Draw Geographical Maps. https://cran.r-project.org/web/packages/maps/index.html

  • Canle-Ferreira, G. F., Garcia-Fuentes, P. A., & Canle Ferreira, J. P. (2018). The successes and shortcoming of Costa Rica exports diversification policies. Background paper to the UNCTAD-FAO. Commodities and Development Report 2017. Commodity markets, economic growth and development. Food and Agriculture Organization of the United Nations.

  • Cesarz, S., Schulz, A. E., Beugnon, R., & Eisenhauer, N. (2019). Testing soil nematode extraction efficiency using different variations of the Baermann-funnel method. Soil Organisms, 91, 61–72. https://doi.org/10.25674/SO91201

    Article  PubMed  PubMed Central  Google Scholar 

  • Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (2002). TCS: Estimating gene genealogies. 6th, international parallel and distributed processing symposium. Fort Lauderdale, FL: IEEE computer society, 184.

  • Derycke, S., Remerie, T., Backeljau, T., Vierstraete, A., Vanfleteren, J., Vincx, M., & Moens, T. (2008). Phylogeography of the Rhabditis (Pellioditis) marina species complex: Evidence for long-distance dispersal, and for range expansions and restricted gene flow in the Northeast Atlantic. Molecular Ecology, 17, 3306–3322. https://doi.org/10.1111/j.1365-294X.2008.03846.x

    Article  CAS  PubMed  Google Scholar 

  • Elbadri, G. A. A., De Ley, P., Waeyenberge, L., Vierstraete, A., Moens, M., & Vanfleteren, J. (2002). Intraspecific variation in Radopholus similis isolates assessed with restriction fragment length polymorphism and DNA sequencing of the internal transcribed spacer region of the ribosomal RNA cistron. International Journal for Parasitology, 32, 199–205.

    Article  CAS  Google Scholar 

  • Gutiérrez-Gutiérrez, C., Castillo, P., Cantalapiedra-Navarrete, C., Landa, B. B., Derycke, S., & Palomares-Rius, J. E. (2011). Genetic structure of Xiphinema pachtaicum and X. index populations based on mitochondrial DNA variation. Phytopathology, 101, 1168–1175. https://doi.org/10.1094/PHYTO-07-10-0194

    Article  CAS  PubMed  Google Scholar 

  • Haegeman, A., Elsen, A., de Waele, D., & Gheysen, G. (2010). Emerging molecular knowledge on Radopholus similis, an important nematode pest of banana. Molecular Plant Pathology, 11, 315–323. https://doi.org/10.1111/J.1364-3703.2010.00614.X

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • He, Y., Jones, J., Armstrong, M., Lamberti, F., & Moens, M. (2005). The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): Considerable economization in the length and structural features of encoded genes. Journal of Molecular Evolution, 61, 819–833. https://doi.org/10.1007/s00239-005-0102-7

    Article  CAS  PubMed  Google Scholar 

  • Hooper, D. J. (1986). Culturing nematodes and related experimental techniques. In J. F. Southey (Ed.), Laboratory methods for work with plant and soil nematodes. Reference book 402 (pp. 133–157). HMSO Ministry of Agriculture, Fisheries and Food.

    Google Scholar 

  • Jacob, J. E. M., Vanholme, B., van Leeuwen, T., & Gheysen, G. (2009). A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis. BMC Research Notes, 2, 192. https://doi.org/10.1186/1756-0500-2-192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan, D. T., & Opperman, C. H. (2000). Reproductive strategies and karyotype of the burrowing nematode, Radopholus similis. Journal of Nematology, 32, 126–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan, D. T., Thomas, W. K., Frisse, L. M., Sarah, J.-L., Stanton, J. M., Speijer, P. R., Marin, D. H., & Opperman, C. H. (2000). Phylogenetic analysis of geographically diverse Radopholus similis via rDNA sequence reveals a monomorphic motif. Journal of Nematology, 32, 134–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Wang, K., Xie, H., Xu, C., Wang, D., Li, J., Huang, X., & Peng, X. (2016). Parasitism and pathogenicity of Radopholus similis to Ipomoea aquatica, Basella rubra and Cucurbita moschata and genetic diversity of different populations. Journal of Integrative Agriculture, 15, 120–134. https://doi.org/10.1016/S2095-3119(14)61003-0

    Article  Google Scholar 

  • Liu, X., Wang, H., Lin, B., Tao, Y., Zhou, K., & Liao, J. (2017). Loop-mediated isothermal amplification based on the mitochondrial COI region to detect Pratylenchus zeae. European Journal of Plant Pathology, 148, 435–446. https://doi.org/10.1007/s10658-016-1102-8

    Article  CAS  Google Scholar 

  • MacGowan, J. B. (1977). The burrowing nematode Radopholus similis (cobb 1893) Thorne 1949. Florida Department of Agriculture & consumer services division of plant industry. 2p. (nematology circular no 27).

  • Mathew, R., & Opperman, C. H. (2019). The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes. PLoS One, 14, e0224391. https://doi.org/10.1371/journal.pone.0224391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, V. C., Villate, L., Gutierrez-Gutierrez, C., Castillo, P., Van Ghelder, C., Plantard, O., & Esmenjaud, D. (2019). Phylogeography of the soil-borne vector nematode Xiphinema index highly suggests eastern origin and dissemination with domesticated grapevine. Scientific Reports, 9, 7313. https://doi.org/10.1038/s41598-019-43812-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomares-Rius, J. E., Archidona-Yuste, A., Cantalapiedra-Navarrete, C., Azpilicueta, A. S., Saborido, A., Tzortzakakis, E. A., Cai, R., & Castillo, P. (2021). New distribution and molecular diversity of the reniform nematode Rotylenchulus macrosoma (Nematoda: Rotylenchulinae) in Europe. Phytopathology, 111, 720–730. https://doi.org/10.1094/PHYTO-04-20-0148-R

    Article  CAS  PubMed  Google Scholar 

  • Plowright, R., Dusabe, J., Coyne, D., & Speijer, P. (2013). Analysis of the pathogenic variability and genetic diversity of the plant-parasitic nematode Radopholus similis on bananas. Nematology, 15, 41–56.

  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  • RStudio Team (2020). RStudio: Integrated development for R. RStudio, PBC, Boston, MA URL: http://www.rstudio.com/.

  • Sarah, J. L., Pinochet, J., & Stanton, J. (1996). The burrowing nematode of bananas, Radopholus similis cobb, 1913. INIBAP.

    Google Scholar 

  • Subbotin, S., Waeyenberge, L., & Moens, M. (2000). Identification of cyst forming nematodes of the genus Heterodera (Nematoda: Heteroderidae) based on the ribosomal DNA-RFLP. Nematology, 2, 153–164. https://doi.org/10.1163/156854100509042

    Article  CAS  Google Scholar 

  • Tan, M., Cobon, J., Aitken, E., & Cook, L. G. (2010). Support for the ‘out-of-Southeast Asia’ hypothesis for the origin of Australian populations of Radopholus similis (cobb, 1893) (Nematoda: Pratylenchidae). Systematic Parasitology, 77, 175–183.

    Article  Google Scholar 

  • Villesen, P. (2007). FaBox: An online toolbox for fasta sequences. Molecular Ecology Notes, 7, 965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.xhttps://birc.au.dk/~palle/php/fabox/

    Article  CAS  Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org

    Book  Google Scholar 

  • Wram, C. L., Hesse, C. N., Wasala, S. K., Howe, D. K., Peetz, A. B., Denver, D. R., Humphreys-Pereira, D., & Zasada, I. A. (2019). Genome announcement: The draft genomes of two Radopholus similis populations from Costa Rica. Journal of Nematology, 51, e2019–e2052. https://doi.org/10.21307/jofnem-2019-052

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoder, M., Ley, I. T. D., King, I. W., Mundo-Ocampo, M., Mann, J., Blaxter, M., Poiras, L., & Ley, P. D. (2006). DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology, 8, 367–376. https://doi.org/10.1163/156854106778493448

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank further anonymous reviewers and editors for their effort in reviewing the manuscript and helping to improve this study.

Authors’ contributions (optional: Please review the submission guidelines from the journal whether statements are mandatory)

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. All authors read and approved the final manuscript.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan E. Palomares-Rius.

Ethics declarations

Conflicts of interest/competing interests

All authors certify that 1) they do not have any actual or potential conflict of interest, 2) the study described is original and has not been published previously, and is not under consideration for publication elsewhere, 3) all prevailing local, national and international regulations and conventions, and normal scientific ethical practices, have been respected.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals

The authors certify that 1) no special permits were required for the fieldwork investigations, 2) soil samplings did not involve any species endangered or protected in Costa Rica, 3) the soil samples analyzed in this study were obtained farming areas that are not under protection in any way.

Ethics approval

All the authors certify that the work carried out in this research followed the principles of ethical and professional conduct have been followed.

Consent to participate

We also certify that all authors have reviewed the manuscript and approved the final version of manuscript before submission.

Consent for publication

We also certify that all authors have reviewed the manuscript and approved the final version for publication in European Journal of Plant Pathology.

Supplementary Information

ESM 1

(XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, P.E., Segura, R., Sandoval, J. et al. Molecular diversity of Radopholus similis (Cobb 1913) Thorne (1949) (Nematoda: Pratylenchidae) affecting banana from Costa Rica. Eur J Plant Pathol 164, 439–446 (2022). https://doi.org/10.1007/s10658-022-02558-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02558-y

Keywords

Navigation