Skip to main content

Advertisement

Log in

Heavy metals: their pathway from the ground, groundwater and springs to Lake Góreckie (Poland)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The migration pathways of heavy metals derived from an area previously in agricultural use was investigated in the Wielkopolski National Park (mid-western Poland). The heavy metals involved (Cd, Cu, Cr, Pb, Ni and Zn) were determined in groundwater, the springs that feed Lake Góreckie and the lake itself. In order to show how the heavy metals may be set free and what is their biological availability, soil and sediment samples were subjected to single-stage extraction, using 0.01 M CaCl2, 0.02 M EDTA, 0.005 M DTPA, 0.1 M HCl, 1 M HCl and de-ionised water. Varying metal concentrations were recorded in the water samples during the study period (from November 2009 to July 2010), usually with higher values in winter and lower ones in summer. The seasonal changes may be ascribed to natural processes taking place in the ground- and surface waters of Lake Góreckie. On the other hand, the concentration levels (mostly of Cd, Pb and Cr) are indicative of anthropogenic activity. It should be mentioned in this context that the highest metal concentrations were found in the soil layer. The concentrations were also found to exceed both the Polish and the World Health Organization water-quality standards. It appears that the soils are highly contaminated, mostly with cadmium. The long-lasting effect of acid precipitation in the area makes it possible for immobile forms to become mobile, thus facilitating further migration into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., & Barberis, R. (2002). Distribution and mobility of metals in contaminated sites. Chemometric investigation of pollutant profiles. Environmental Pollution, 119, 177–193.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metal in soils. London: Blackie Academic and Professional.

    Google Scholar 

  • Alloway, A. B. J., Morgan, H., Assink, J. W., & Van den Brink, W. J. (1986). The behaviour of availability of Cd, Ni, and Pb in polluted soils. In Contaminated Soils (pp. 101–113). the Netherlands: Dordrecht.

    Chapter  Google Scholar 

  • Bojakowska, I., & Sokołowska, G. (1998). Geochemical purity classes of bottom sediments. Przegląd Geologiczny, 46, 49–55.

    Google Scholar 

  • Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: a review. Journal of Environmental Quality, 26, 590–602.

    Article  CAS  Google Scholar 

  • Ettler, V., Matura, M., Mihaljevič, M., & Bezdička, P. (2006). Metal speciation and attenuation in stream waters and sediments contaminated by landfill leachate. Environmental Geology, 49, 610–619.

    Article  CAS  Google Scholar 

  • Evans, L. J., & Zhao, G. (1995). Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils. International Journal of Environmental Analytical Chemistry, 59, 291–302.

    Article  CAS  Google Scholar 

  • Frei, M., Bielert, M., & Heinrichs, H. (2000). Effects of pH, alkalinity and bedrock chemistry on metal concentrations of spring in an acidified catchment (Ecker Dam, Harz Mountains, FRG). Chemical Geology, 170, 221–242.

    Article  CAS  Google Scholar 

  • Górski, J. (2001). Proposal of anthropogenic contamination evaluation of ground water on the base of chosen hydrochemical indicators. Współczesne Problemy Hydrogeologii, 2, 309–313.

    Google Scholar 

  • Górski, J., & Przybyłek, J. (2003). The problems of anthropogenic threat and protection of ground water at the Wielkopolski National Park area and surroundings. Morena, 10, 59–71.

    Google Scholar 

  • Helios-Rybicka, E., Adamiec, E., & Aleksander-Kwaterczak, U. (2005). Distribution of trace metals in the Odra River system: water–suspended matter–sediments. Limnological Review, 35, 185–198.

    Article  Google Scholar 

  • Hydrogeological Map of Poland (2006) 1:50 000, Stęszew Sheet. Warsaw

  • Ibragimow, A., Głosińska, G., Siepak, M., & Walna, B. (2010). Heavy metals in fluvial sediments of the Odra River flood plains—introductory research. Quaestiones Geographiceae, 29(1), 37–47.

    Article  Google Scholar 

  • Johnson, N. M., Driscoll, C. T., Eaton, J. S., Likens, G. E., & McDowell, W. H. (1981). “Acid rain”, dissolved aluminium and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire. Geochimica et Cosmochimica Acta, 45, 1421–1437.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soil and plants (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Karczewska, A. (1996). Metal species distribution in the area affected by copper smelter. Applied Geochemistry, 11, 35–42.

    Article  CAS  Google Scholar 

  • Laing, G. D., Rinklebe, J., Vendecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. The Science of the Total Environment, 40, 3972–3985.

    Google Scholar 

  • Lis, J., & Pasieczna, A. (1995). Geochemical Atlas of Poland. Warsaw: Polish Geological Institute.

    Google Scholar 

  • Lopes-Sanchez, J. F., Sahuquilo, A., Rauret, G., Lachica, M., Gomez, A., Ure, A. M., et al. (2002). Extraction procedures for soil analysis. In Ph Quevauviller (Ed.), Methodologies for soil and sediment fractionation studies (pp. 28–57). Brussels: The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Mc, B. M. (1994). Environmental chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • Mc Laughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31, 11–14.

    Article  Google Scholar 

  • Minister of Health (2010) Regulation on the quality of water for consumption by humans, 20 April (Dziennik Ustaw no. 72, poz. 466) (in Polish).

  • Minister of the Environment (2008a) Regulation on the criteria and methods used in the assessment of groundwater condition, 23 July (Dziennik Ustaw of 6 August 2008) (in Polish).

  • Minister of the Environment (2008b) Regulation on the methods for classifying the condition of consolidated surface water bodies, 28 August (Dziennik Ustaw of 9 September 2008) (in Polish).

  • Müller G. (1981). Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chemiker Zeitung, Chemie, Technische Chemie, Chemiewirtscaft 105: 157–164.

  • Peijnenburg, W., Zablotskaja, M., & Vijver, M. G. (2007). Monitoring metals in terrestrial environments within a bioavailability framework and focus on soil extraction. Ecotoxicology and Environmental Safety, 67, 163–179.

    Article  CAS  Google Scholar 

  • Pełechaty, M., Gąbka, M., Sugier, P., Pukacz, A., Chmiel, S., Ciecierska, H., et al. (2009). Lychnothamnus barbatus in Poland: habitats and associations. Charophytes, 2, 13–18.

    Google Scholar 

  • Quevauviller, Ph. (2002). SM&T activities in support of standardization of operationally defined extraction procedures for soil and sediment analysis. In Ph Quevauviller (Ed.), Methodologies for soil and sediment fractionation studies. Brussels: The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Reimann, C., & De Caritat, P. (1998). Chemical elements in the environment: factsheet for the geochemist and environmental scientist. Berlin: Springer.

    Google Scholar 

  • Rennert, T., Meisner, S., Rinklebe, J., & Totsche, K. U. (2010). Dissolved inorganic contaminants in floodplain soil: comparison of in situ soil solutions and laboratory methods. Water, Air, and Soil Pollution, 209, 489–500.

    Article  CAS  Google Scholar 

  • Ross, S. M. (1994). Toxic metals in soil-plant system. London: Wiley.

    Google Scholar 

  • Schmidtt, D., Taylor, H. E., Aiken, G. R., Roth, D. A., & Frimmel, F. H. (2002). Influence of natural organic matter on the adsorption of metal ions onto clay minerals. Environmental Science and Technology, 36, 2932–2938.

    Article  Google Scholar 

  • Siepak, J., Burchardt, L., Pełechaty, M., & Osowski, A. (1999). Study outline 1948 – 1998 (Hydrochemical studies in the area of the Wielkopolski National Park). Poznań: University Press.

    Google Scholar 

  • Siepak, M., Novotný, K., Vaculovič, T., Górski, J., & Przybyłek, J. (2010). Variability of chemical composition of groundwater at the Miocene Aquifer in the Poznań-Gostyń fault graben region (Poland). Polish Geological Institute Bulletin, 441, 145–156.

    Google Scholar 

  • Sobczyński, T., & Joniak, T. (2009). Differences of the composition and contribution of phosphorus fractions in the bottom sediments of Góreckie Lake (Wielkopolska National Park). Environment Protection Engineering, 35, 89–95.

    Google Scholar 

  • Sobczyński, T., Elbanowska, H., Zerbe, J., Siepak, J., Andrzejewski, W., & Mastyński, J. (1995). Bioaccumulation of heavy metals in fish of the lakes of the Wielkopolski National Park. Morena, 3, 111–116.

    Google Scholar 

  • Sobczyński, T., Zerbe, J., Elbanowska, H., & Siepak, J. (1996). Chemical study of Lake Góreckie bottom sediments in view of the assessment of anthropopressure. Ekologia i Technika, 2, 14–18.

    Google Scholar 

  • Sposito, G. (1986). Sorption of trace metals by humic materials in soils and natural water. Critical Reviews in Environmental Control, 16, 193–229.

    Article  CAS  Google Scholar 

  • Stauffer, R. E., & Wittchen, B. D. (1991). Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA. Geochimica et Cosmochimica Acta, 55, 3253–3271.

    Article  CAS  Google Scholar 

  • Szczucińska, A., Siepak, M., Zioła-Frankowska, A., & Marciniak, M. (2010). Seasonal and spatial changes of metal concentrations in groundwater outflows from porous sediments in the Gryżyna-Grabin Tunnel Valley in western Poland. Environmental Earth Sciences, 61, 921–930.

    Article  Google Scholar 

  • Szyper, H., & Gołdyn, R. (2002). Role of catchment area in the transport of nutrients to lakes in the Wielkopolska National Park in Poland. Lakes & Reservoirs: Research and Management, 7, 25–33.

    Article  CAS  Google Scholar 

  • Tack, F. M. G., & Verloo, M. G. (1999). Single extraction versus sequential extraction for estimation of heavy metal fractions in reduced and oxidized dredged sediments. Chemical Speciation and Bioavailability, 11, 43–50.

    Article  CAS  Google Scholar 

  • Topographic Map (1998) 1:10 000, Trzebaw Sheet (N-33-142-B-a-3). Head Office of Geodesy and Cartography, Warsaw.

  • Ure, A. M. (1996). Single extraction schemes for soil analysis and related applications. The Science of the Total Environment, 178, 3–10.

    Article  CAS  Google Scholar 

  • Walna, B. (2006). Composition and soil water changes as a measure of atmospheric precipitation impact in forest ecosystem. Central European Journal of Chemistry, 5, 349–383.

    Article  Google Scholar 

  • Walna, B., & Kurzyca, I. (2007). Evaluation of bulk deposition in protected woodland area in western Poland. Environmental Monitoring and Assessment, 131, 13–26.

    Article  CAS  Google Scholar 

  • Walna, B., & Kurzyca, I. (2010). Changes and trends in the chemistry of precipitation in the Wielkopolski National Park (Poland). In G. Polisciano & O. Farina (Eds.), National Parks: Vegetation, Wildlife and Threats (pp. 51–82). Commack: Nova.

    Google Scholar 

  • Walna, B., & Siepak, J. (1999). Research on the variability of physical-chemical parameters characterizing acidic atmospheric precipitation at the Jeziory Ecological Station in the Wielkopolski National Park (Poland). The Science of the Total Environment, 239, 173–187.

    Article  CAS  Google Scholar 

  • Walna, B., Siepak, J., & Drzymała, S. (2001). Soil degradation in the Wielkopolski National Park (Poland) as an effect of acid rain simulation. Water, Air, and Soil Pollution, 130, 1727–1732.

    Article  Google Scholar 

  • Walna, B., Kurzyca, I., & Siepak, J. (2004). Local effects of pollution on chemical composition of precipitation in areas differing in human impact. Polish Journal of Environmental Studies, 13, 36–42.

    Google Scholar 

  • Walna, B., Spychalski, W., & Siepak, J. (2005). Assessment of potentially reactive pools of aluminium in poor forest soils using two methods of fractionation analysis. Journal of Inorganic Biochemistry, 99(9), 1807–1816.

    Article  CAS  Google Scholar 

  • Walna, B., Kurzyca, I., & Siepak, J. (2007). Variations in the fluoride level in precipitation in a human impact region. Water, Air, and Soil Pollution, 7, 33–40.

    Article  CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva, Switzerland.

  • World Reference Base for Soil Resources (1998). Food and Agriculture Organization of United Nations. World Soil Resources Reports no. 103. FAO, Rome.

  • Zerbe, J., Elbanowska, H., Gramowska, H., Adamczewska, M., Sobczyński, T., Kabaciński, M., & Siepak, J. (1994). The assessment of the influence of emission of fluorine and other pollutants on water, plants and soil in the Wielkopolski National Park. In L. Kozacki (Ed.), Geoecosystem of the Wielkopolski National Park as a protective area under human impact (pp. 89–135). Poznań: Bogucki Wydawnictwo Naukowe.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Ministry of Science and for the Higher Education research grant NN 304022937.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Walna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walna, B., Siepak, M. Heavy metals: their pathway from the ground, groundwater and springs to Lake Góreckie (Poland). Environ Monit Assess 184, 3315–3340 (2012). https://doi.org/10.1007/s10661-011-2191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2191-7

Keywords

Navigation