Skip to main content
Log in

Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales—review and recommendations

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine temporal changes and spatial differences in SOC. This requires sufficiently detailed data to predict SOC stocks at appropriate scales within the required accuracy so that only significant changes are accounted for. When designing sampling campaigns, taking into account factors influencing SOC spatial and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need to be defined: profile, plot, forests, catchment, national or wider. Scaling up SOC stocks from point sample to landscape unit is challenging, and thus requires reliable baseline data. Knowledge of the associated uncertainties related to SOC measures at each particular scale and how to reduce them is crucial for assessing SOC stocks with the highest possible accuracy at each scale. This review identifies where potential sources of errors and uncertainties related to forest SOC stock estimation occur at five different scales—sample, profile, plot, landscape/regional and European. Recommendations are also provided on how to reduce forest SOC uncertainties and increase efficiency of SOC assessment at each scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abella, S. R., & Zimmer, B. W. (2007). Estimating organic carbon from loss-on-ignition in northern Arizona forest soils. Soil Science Society of America Journal, 71, 545–550.

    Article  CAS  Google Scholar 

  • Arrouays, D., Deslais, W., & Badeau, V. (2001). The carbon content of topsoil and its geographical distribution in France. Soil Use and Management, 17, 7–11.

    Article  Google Scholar 

  • Bárcena, T. G., Gundersen, P., & Vesterdal, L. (2014). Afforestation effects on SOC in former cropland: oak and spruce chronosequences resampled after 13 years. Global Change Biology, 20, 2938–2952.

    Article  Google Scholar 

  • Baritz, R., & Van Ranst, E. (2006). CarboInvent. Methodological standards to detect forest soil carbon stocks and stock changes related to land use change and forestry: Part I: plot level aspects. Final report (Deliverable 3.5), Doc. No: WP3-D3.5-Plot RUG, Issue/Rev.: 1.0.

  • Baritz, R., Adler, G., Wolff, B., & Wilke, B. M. (1999). Carbon in German forest soils and its relation to climate change. Zeitschrift für Angewandte Geologie, 45, 218–227.

    CAS  Google Scholar 

  • Baritz, R., Zirlewagen, D., & Van Ranst, E. (2006). CarboInvent. Methodological standards to detect forest soil carbon stocks and stock changes related to land use change and forestry: Part II—landscape level. Final report (Deliverable 3.5). Doc. No: WP3-D3.5-Landscape RUG, Issue/Rev.: 2.0.

  • Baritz, R., Eberhardt, E., Van Liedekerke, M.H., & Panagos, P. (2008). Environmental assessment of soil for monitoring: Volume III database design and selection. EUR 23490 EN/3 Office for the Official Publications of the European Communities, Luxembourg, 125 pp. doi:10.2788/93697.

  • Baritz, R., Seufert, G., Montanarella, L., & Van Ranst, E. (2010). Carbon concentrations and stocks in forest soils of Europe. Forest Ecology and Management, 260, 262–277.

    Article  Google Scholar 

  • Bastrup-Birk, A., Neville, P., Chirici, G. & Houston, T. (2007). The BioSoil Forest Biodiversity Field Manual. Hamburg: ICP Forests.

  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.

    Article  CAS  Google Scholar 

  • Batjes, N. H. (2002). Carbon and nitrogen stocks in the soils of Central and Eastern Europe. Soil Use and Management, 18, 324–329.

    Article  Google Scholar 

  • Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978-2003. Nature, 437, 245–248.

    Article  CAS  Google Scholar 

  • Bellhouse, D. R. (1977). Some optimal designs for sampling in two dimensions. Biometrika, 64, 605–611.

    Article  Google Scholar 

  • Bellhouse, D.R. (1988). In P. R. Krisnaiah, & C.R. Rao (Ed.), Systematic sampling, Handbook of statistics, vol. 6 (pp. 125–146). North-Holland.

  • Benham, S. E., Vanguelova, E. I., & Pitman, R. M. (2012). Short and long term changes in carbon, nitrogen and acidity in the forest soils under oak at the Alice Holt Environmental Change Network site. Science of the Total Environment, 421-422, 82–93.

    Article  CAS  Google Scholar 

  • Berg, B., Johansson, M.-B., Nilsson, Å., Gundersen, P., & Norell, L. (2009). Sequestration of carbon in the humus layer of Swedish forests—direct measurements. Canadian Journal of Forest Research, 39, 962–975.

    Article  CAS  Google Scholar 

  • Bernoux, M., Arrouays, D., Cerri, C., Volkoff, B., & Jolivet, C. (1998). Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Science Society of America Journal, 62, 743–749.

    Article  CAS  Google Scholar 

  • Bhatti, J. S., & Bauer, I. E. (2002). Comparing loss-on-ignition with dry combustion as a method for determining carbon content in upland and lowland forest ecosystems. Communications in Soil Science and Plant Analysis, 33, 3419–3430.

    Article  CAS  Google Scholar 

  • Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91, 27–45.

    Article  Google Scholar 

  • Blake, G.R., & Hartge, K.N. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis, Part 1: physical and mineralogical methods, 2nd Edn. SSSA Book Series 5 (pp. 363–375). Madison.

  • Blake, L., Goulding, K. W. T., Mott, C. J. B., & Poulton, P. R. (2000). Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments. European Journal of Soil Science, 51, 345–353.

    Article  CAS  Google Scholar 

  • Bonifacio, E., Falsone, G., Simonov, G., & Celi, L. (2008). Estimates of C stocks and pedogenic processes in the Russian Taiga. Advances in GeoEcology, 39, 301–312.

    Google Scholar 

  • Bonifacio, E., Falsone, G., & Petrillo, M. (2011). Humus forms, organic matter stocks and carbon fractions in forest soils of North-western Italy. Biology and Fertility of Soils, 47, 555–566.

    Article  CAS  Google Scholar 

  • Bradley, R. I., Milne, R., Bell, J., Lilly, A., Jordan, C., & Higgins, A. (2005). A soil carbon and land use database for the United Kingdom. Soil Use and Management, 21, 363–369.

    Article  Google Scholar 

  • Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M. T., Tau-Strand, L., Vesterdal, L., & Westman, C. J. (2003). Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Global Change Biology, 9, 358–370.

    Article  Google Scholar 

  • Cannell, M. G. R., Dewar, R. C., & Thornley, J. H. M. (1992). Carbon flux and storage in European forest. In A. Teller, P. Mathy, & J. N. R. Je_ers (Eds.), Responses of forest ecosystems to environmental changes (pp. 256–271). London: Elsevier.

    Chapter  Google Scholar 

  • Chamberlain, P. M., Emmett, B. A., Scott, W. A., Black, H. I. J., Hornung, M., & Frogbrook, Z. L. (2010). No change in topsoil carbon levels of Great Britain, 1978–2007. Biogeosciences Discussions, 7, 2267–2311.

    Article  Google Scholar 

  • Chapman, S. J., Bell, J., Donnelly, D., & Lilly, A. (2009). Carbon stocks in Scottish peatlands. Soil Use and Management, 25, 105–112.

    Article  Google Scholar 

  • Cienciala, E., Seufert, G., Blujdea, V., Grassi, G., & Exnerová, Z. (2010). Harmonized methods for assessing carbon sequestration in European forests Results of the Project “Study under EEC 2152/2003 Forest Focus regulation on developing harmonized methods for assessing carbon sequestration in European forests”, JRC Scientific and Technical reports.

  • Conant, R. T., Smith, G. R., & Paustian, K. (2003). Spatial variability of soil carbon in forested and cultivated sites: implications for change detection. Journal of Environmental Quality, 32, 278–286.

    Article  CAS  Google Scholar 

  • Conen, F., Zerva, A., Arrouays, D., Jolivet, C., Jarvis, P., Grace, J., & Mencuccini, M. (2004). The carbon balance of forest soils; detectability of changes in soil carbon stocks in temperate and boreal forests. In H. Griffith & P. Jarvis (Eds.), The carbon balance of forest biomes (pp. 233–247). Oxford: Bios Scientific Press.

    Google Scholar 

  • Cools, N., & De Vos, B. (2010). Sampling and Analysis of Soil. Manual Part X, 208 pp. In Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests, Hamburg. [http://www.icp-forests.org/Manual.htm].

  • Cools, N. & De Vos, B. (2013) Forest soil: Characterization, sampling, physical, and chemical analyses. In “Forest monitoring — methods for terrestrial investigations in Europe with an overview of North America and Asia”. Chapter 15. M. Ferretti and R. Fischer (Eds.). Developments in Environmental Science, 12, 267–300. 

  • Cools, N., Mikkelsen, J. H., & De Vos, B. (2008). Soil organic carbon stocks and stock changes on Flemish level I and level II plots. FSCC supporting study of the EU Forest Focus BioSoil demonstration project. INBO.IR.2008.50. Brussels: Research Institute for Nature and Forest.

    Google Scholar 

  • Corti, G., Ugolini, F. C., & Agnelli, A. (1998). Classing the soil skeleton (greater than two millimeters): proposed approach and procedure. Soil Science Society of America Journal, 62, 1620–1629.

    Article  CAS  Google Scholar 

  • Cresser, M. S., Gonzalez, R. L., & Leon, A. (2007). Evaluation of the use of soil depth and parent material data when predicting soil organic carbon concentration from LOI values. Geoderma, 140, 132–139.

    Article  CAS  Google Scholar 

  • Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.

    Article  CAS  Google Scholar 

  • De Vos, B. (2009). Uncertainties of forest soil carbon stock assessment in Flanders. Doctoral dissertation no. 865 of the Faculty of Bioscience Engineering. K.U.Leuven. 318 p.

  • De Vos, B., Vandecasteele, B., Deckers, J., & Muys, B. (2005a). Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils. Communications in Soil Science and Plant Analysis, 36, 2899–2921.

    Article  CAS  Google Scholar 

  • De Vos, B., Van Meirvenne, M., Quataert, P., Deckers, J., & Muys, B. (2005b). Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Science Society of America Journal, 69, 500–510.

    Article  CAS  Google Scholar 

  • De Vos, B., Lettens, S., Muys, B., & Deckers, S. (2007). Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management, 23, 221–229.

    Article  Google Scholar 

  • De Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., & Carnicelli, S. (2015). Benchmark values for forest soil carbon stocks in Europe: results from a large scale forest soil survey. Geoderma, 251-252, 33–46.

    Article  CAS  Google Scholar 

  • De Vries, W., Reinds, G.J., Van Kerkvoorde, M.S., Hendriks, C.M.A., Leeters, E.E.J.M., Gross, C.P., Voogd, J.C.H., & Vel, E.M. (2000). Intensive monitoring of forest ecosystems in Europe. Technical report 2000. EC-UN/ECE (2000) and Forest Intensive Monitoring Coordinating Institute (FIMCI), Brussels, Geneva, 191 pp.

  • De Vries, W., Reinds, G.J., Posch, M., Sanz, M.J., Krause, G.H.M., Calatayud, V., Renaud, J.P., Dupouey, J.L., Sterba, H., Vel, E.M., Dobbertin, M., Gundersen, P., & Voogd, J.C.H. (2003). Intensive monitoring of forest ecosystems in Europe, 2003. Technical Report. EC/UN-ECE 2003, Brussels, Geneva, 163 pp.

  • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and fluxes of global forest ecosystems. Science of the Total Environment, 263, 185–190.

    CAS  Google Scholar 

  • Ellert, B. H., Janzen, H. H., & McConkey, B. G. (2001). Measuring and comparing soil carbon storage. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment methods for soil carbon (pp. 131–1465). Boca Raton: CRC Press.

    Google Scholar 

  • FAO (2006). Guidelines for soil profile description and classification (4th ed.). Rome: Food and 773 Agriculture Organisation.

    Google Scholar 

  • Fernández-Romero, M. L., Lozano-García, B., & Parras-Alcántara, L. (2014). Topography and land use change effects on the soil organic carbon stock of forest soils in Mediterranean natural areas. Agriculture, Ecosystems & Environment, 195, 1–9.

    Article  Google Scholar 

  • Finér, L., Helmisaari, H.–S., Lõhmus, K., Majdi, H., Brunner, I., Børja, I., et al. (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems, 141, 394–405.

  • Frogbrook, Z. L., Bell, J., Bradley, R. I., Evans, C., Lark, R. M., Reynolds, B., Smith, P., & Towers, W. (2009). Quantifying terrestrial carbon stocks: examining the spatial variation in two upland areas in the UK and a comparison to mapped estimates of soil carbon. Soil Use and Management, 25, 320–332.

    Article  Google Scholar 

  • Goidts, E., Van Wesemael, B., & Crucifix, M. (2009). Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. European Journal of Soil Science, 60, 723–739.

    Article  CAS  Google Scholar 

  • Goodale, C. L., Apps, M. J., Birdsey, R. A., et al. (2002). Forest carbon sinks in the northern hemisphere. Ecological Applications, 12, 891–899.

    Article  Google Scholar 

  • Grace, J. (2004). Understanding and managing the global carbon cycle. Journal of Ecology, 92, 189–202.

    Article  CAS  Google Scholar 

  • Grewal, K. S., Buchan, G. D., & Sherlock, R. R. (1991). A comparison of three methods of organic carbon determination in some New Zealand soils. Journal of Soil Science, 42, 251–257.

    Article  CAS  Google Scholar 

  • Griffiths, R. P., Madritch, M. D., & Swanson, A. K. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties. Forest Ecology and Management, 257, 1–7.

    Article  Google Scholar 

  • Grüneberg, E., Schöning, I., Kalko, E. K. V., & Weisser, W. W. (2010). Regional organic carbon stock variability: a comparison between depth increments and soil horizons. Geoderma, 155, 426–433.

    Article  CAS  Google Scholar 

  • Häkkinen, M., Heikkinen, J., & Mäkipää, R. (2011). Soil carbon stock increases in the organic layer of boreal middle-aged stands. Biogeoscience, 8, 1279–1289.

    Article  CAS  Google Scholar 

  • Hansen, K., Vesterdal, L., Schmidt, I. K., Gundersen, P., Sevel, L., Bastrup-Birk, A., Pedersen, L. B., & Bille-Hansen, J. (2009). Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257, 2133–2144.

    Article  Google Scholar 

  • Harrison, A. F., & Bocock, K. L. (1981). Estimation of soil bulk-density from loss-on-ignition values. Journal of Applied Ecology, 8, 919–927.

    Article  Google Scholar 

  • Harrison, R. B., Adams, A. B., Licata, C., Flaming, B., Wagoner, G. L., Carpenter, P., & Vance, E. D. (2003). Quantifying deep-soil and coarse-soil fractions: avoiding sampling bias. Soil Science Society of America Journal, 67, 1602–1606.

    Article  CAS  Google Scholar 

  • Heim, A., Wehrli, L., Eugster, W., & Schmidt, M. W. I. (2009). Effects of sampling design on the probability to detect soil carbon stock changes at the Swiss CarboEurope site Lägeren. Geoderma, 149, 347–354.

    Article  CAS  Google Scholar 

  • Hoosbeek, M. R., & Scarascia-Mugnozza, G. E. (2009). Increased litter build up and soil organic mattter stabilization in a poplar plantation after 6 years of atmospheric CO2 enrichment (FACE): final results of POP-EuroFACE compared to other forest FACE experiments. Ecosystems, 12, 220–239. doi:10.1007/s10021-008-9219-z.

    Article  CAS  Google Scholar 

  • Hopkins, D. W., Waite, I. S., McNicol, J. W., Poulton, P. R., Macdonald, A. J., & O'Donnell, A. G. (2009). Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Global Change Biology, 15, 1739–1754.

    Article  Google Scholar 

  • Howard, P. J. A., Loveland, P. J., Bradley, R. I., Dry, F. T., Howard, D. M., & Howard, D. C. (1995). The carbon content of soil and its geographical distribution in Great Britain. Soil Use and Management, 11, 9–15.

    Article  Google Scholar 

  • Howard, P. J. A., Howard, D. M., & Lowe, L. E. (1998). Effects of tree species and soil physico-chemical conditions on the nature of soil organic matter. Soil Biology & Biochemistry, 30, 285–297.

    Article  CAS  Google Scholar 

  • IPCC (2000). In R. T. Watson, I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, & D. J. Dokken (Eds.), Land use, land-use change, and forestry (p. 375). Cambridge: Cambridge University Press

  • IPCC (2003). In J. Penman et al. (Eds.), Available online at http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm. August 13, 2004 Good practice guidance for land use, land-use change, and forestry. National Greenhouse Gas Inventories Programme, the intergovernmental panel on climate change.

    Google Scholar 

  • IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas Inventories Programme, The Intergovernmental panel on climate change. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), Hayama.

  • ISO (1994). ISO 11464, Soil Quality – Pretreatment of samples for physico-chemical analysis. International Organization for Standardization, Geneva, pp. 9

  • Jalabert, S. S. M., Martin, M. P., Renaud, J. P., Boulonne, L., Jolivet, C., Montanarella, L., & Arrouays, D. (2010). Estimating forest soil bulk density using boosted regression modelling. Soil Use and Management, 26, 516–528.

    Article  Google Scholar 

  • Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter Jr., D., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468-469, 376–383.

    Article  CAS  Google Scholar 

  • Jian-Bing, W., Du-Ning, X., Xing-Yi, Z., Xiu-Zhen, L., & Xiao-Yu, L. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the black soil region, Northeast China. Environmental Monitoring and Assessment, 121, 597–613.

    Article  CAS  Google Scholar 

  • Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.

    Article  Google Scholar 

  • Jolivet, C., Arrouays, D., & Bernoux, M. (1998). Comparison between analytical methods for organic carbon and organic matter determination in sandy spodosols of France. Communications in Soil Science and Plant Analysis, 29, 2227–2233.

    Article  CAS  Google Scholar 

  • Jones, R. J. A., Hiederer, R., Rusco, E., & Montanarella, L. (2005). Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science, 56, 655–671.

    Article  CAS  Google Scholar 

  • Jungkunst, H. F., Flessa, H., Scherber, C., & Fiedler, S. (2008). Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biology and Biochemistry, 40, 2047–2054.

    Article  CAS  Google Scholar 

  • Kasozi, G. N., Nkedi-Kizza, P., & Harris, W. G. (2009). Varied carbon content of organic matter in histosols, spodosols, and carbonatic soils. Soil Science Society of America Journal, 73, 1313–1318.

    Article  CAS  Google Scholar 

  • Kirwan, N., Oliver, M. A., Moffat, A. J., & Morgan, G. W. (2005). Sampling the soil in long-term forest plots: The implications of spatial variation. Environmental Monitoring and Assessment, 111(1-3), 149–172.

  • Kobal, M., Urbancic, M., Potocic, N., De Vos, B., & Simoncic, P. (2011). Pedotransfer functions for bulk density estimation of forest soils. Sumarski List, 135, 19–27.

    Google Scholar 

  • Komy, Z. R. (1995). Comparative-study of titrimetric and gravimetric methods for the determination of organic-carbon in soils. International Journal of Environmental Analytical Chemistry, 60, 41–47.

    Article  CAS  Google Scholar 

  • Krebs, C. J. (1999). Ecological methodology. Menlo Park, CA: Addison Wesley Longman.

    Google Scholar 

  • Kulmatiski, A., Vogt, D. J., Siccama, T. G., & Beard, K. H. (2003). Detecting nutrient pool changes in rocky forest soils. Soil Science Society of America Journal, 67, 1282–1286.

    Article  CAS  Google Scholar 

  • Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242–258.

    Article  Google Scholar 

  • Lal, R. (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy & Environmental Science, 1, 86–100.

    Article  CAS  Google Scholar 

  • Lettens, S., Van Orshoven, J., Van Wesemael, B., & Muys, B. (2004). Soil organic and inorganic carbon content of landscape units in Belgium for 1950–1970. Soil Use and Management, 20, 40–47.

    Article  Google Scholar 

  • Lettens, S., Van Orshoven, J., Van Wesemael, B., De Vos, B., & Muys, B. (2005). Stocks and fluxes of soil organic carbon for landscape units in Belgium derived from heterogeneous data sets for 1990 and 2000. Geoderma, 127, 11–23.

    Article  CAS  Google Scholar 

  • Lettens, S., De Vos, B., Quataert, P., van Wesemael, B., Muys, B., & Van Orshoven, J. (2007). Variable carbon recovery of Walkley-Black analysis and implications for national soil organic carbon accounting. European Journal of Soil Science, 58, 1244–1253.

    Article  CAS  Google Scholar 

  • Liski, J. (1995). Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand-effect of trees and implications for sampling. Silva Fennica, 29, 255–266.

    Article  Google Scholar 

  • Liski, J., & Westman, C. J. (1997). Carbon storage in forest soils of Finland. Effect of termoclimate. Biogeochemistry, 36, 239–260.

    Article  Google Scholar 

  • Liski, J., Perruchoud, D., & Karjalainen, T. (2002). Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management, 169, 159–175.

    Article  Google Scholar 

  • Mäkipää, R., Liski, J., Guendehou, S., Malimbwi, R., & Kaaya, A. (2012). Soil carbon monitoring using surveys and modeling General description and application in the United Republic of Tanzania, FAO forestry paper No. 168, 2012.

  • Makkonen, K., & Helmisaari, H. S. (1999). Assessing fine-root biomass and production in a Scots pine stand—comparison of soil core and root ingrowth core methods. Plant and Soil, 210, 43–50.

    Article  CAS  Google Scholar 

  • Martin, M. P., Lo Seen, D., Boulonne, L., Jolivet, C., Nair, K. M., Bourgeon, G., & Arrouays, D. (2009). Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees. Soil Science Society of America Journal, 73, 485–493.

    Article  CAS  Google Scholar 

  • Matejovic, I. (1993). Determination of carbon, hydrogen, and nitrogen in soils by automated elemental analysis (dry combustion method). Communication of Soil Science and Plant Analysis, 24, 2213–2222.

    Article  CAS  Google Scholar 

  • McNabb, D. H., Cromack Jr., K., & Fredriksen, R. L. (1986). Variability of nitrogen and carbon in surface soils of six forest types in the Oregon Cascades. Soil Science Society of America Journal, 50, 1037–1041.

    Article  Google Scholar 

  • Melin, Y., Petersson, H., & Nordfjell, T. (2009). Decomposition of stump and root systems of Norway spruce in Sweden—a modelling approach. Forest Ecology and Management, 257, 1445–1451.

    Article  Google Scholar 

  • Morison, J., Matthews, R., Miller, G., Perks, M., Randle, T., Vanguelova, E., White, M. and Yamulki, S. (2012). Understanding the carbon and greenhouse gas balance of forests in Britain. Forestry Commission Research Report. Forestry Commission, Edinburgh. i–vi + 1–149 pp. http://www.forestry.gov.uk/pdf/FCRP018.pdf/$FILE/FCRP018.pdf. Accessed 14 Oct 2016.

  • Morison, J.I.L., Vanguelova, E.I., Broadmeadow, S., Perks, M., Yamulki, S. and Randle, T. (2010). Understanding the GHG implications of forestry on peat soils in Scotland. Report for Forestry Commission Scotland, October 2010, Forest Research, 56pp. http://www.forestry.gov.uk/pdf/FCS_forestry_peat_GHG_final_Oct13_2010.pdf/$FILE/FCS_forestry_peat_GHG_final_Oct13_2010.pdf. Accessed 14 Oct 2016.

  • Muukkonen, P., Häkkinen, M., & Mäkipää, R. (2009). Spatial variation in soil carbon in the organic layer of managed boreal forest soil – implications for sampling design. Environmental Monitoring and Assessment, 158, 67–76.

  • Nelson, D.W., & Sommers, L.E. (1996). Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America Book Series no. 5 (pp. 961–1010).

  • O’Connell, D. A., Ryan, P. J., McKenzie, N. J., & Ringrose-Voase, A. J. (2000). Quantitative site and soil descriptors to improve the utility of forest soil surveys. Forest Ecology and Management, 138, 107–122.

    Article  Google Scholar 

  • Oueslati, I., Allamano, P., Bonifacio, E., & Claps, P. (2013). Vegetation and topographic control on the spatial variability of forest soil organic carbon. Pedosphere, 23, 48–58.

    Article  CAS  Google Scholar 

  • Palmer, C. J., Smith, W. D., & Conkling, B. L. (2002). Development of a protocol for monitoring status and trends in forest soil carbon at a national level. Environmental Pollution, 116, 209–219.

    Article  Google Scholar 

  • Peltoniemi, M., Thurig, E., Ogle, S., Palosuo, T., Schrumpf, M., Wutzler, T., Butterbach-Bahl, K., Chertov, O., Komarov, A., Mickhailov, A., Gardenas, A., Perry, C., Liski, J., Smith, P., & Makipaa, R. (2007). Models in country scale carbon accounting of forest soils. Silva Fennica, 41, 575–602.

    Google Scholar 

  • Périé, C., & Ouimet, R. (2008). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88, 315–325.

    Article  Google Scholar 

  • Post, W. M., Izaurralde, R. C., Mann, L. K., & Bliss, N. (2001). Monitoring and verifying changes of organic carbon in soils. Climatic Change, 51, 73–99.

    Article  Google Scholar 

  • Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156, 75–83.

    Article  CAS  Google Scholar 

  • Saby, N., & Arrouays, D. (2004). Simulation of the use of a soil-monitoring network to verify carbon sequestration in soils: will changes in organic carbon stocks be detectable? Soil Science and Plant Analysis, 35, 2379–2396.

    Article  CAS  Google Scholar 

  • Saby, N. P. A., Bellamy, P. H., Morvan, X., Arrouays, D., Jones, R. J. A., Verheijen, F. G. A., Kibblewhite, M. G., Verdoot, A. Y., Üveges, J. B., Freudenschuß, A., & Simota, C. (2008). Will European soil-monitoring networks be able to detect changes in topsoil organic carbon? Global Change Biology, 14, 1–11.

    Article  Google Scholar 

  • Saiz, G., Green, C., Butterbach-Bahl, K., Kiese, R., Avitabile, V., & Farrell, E. P. (2006). Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil, 287, 161–174.

    Article  CAS  Google Scholar 

  • Schils, R.L.M., Kuikman, P., & Liski, J. et al. (2008). Review of existing information on the interrelations between soil and climate change (CLIMSOIL). In: Technical Report - 2008 - 048 (pp. 208) European Commission, Brussels, Belgium.

  • Schöning, I., Totsche, K. U., & Kögel-Knabner, I. (2006). Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma, 136, 631–642.

    Article  CAS  Google Scholar 

  • Schrumpf, M., Schulze, E. D., Kaiser, K., & Schumacher, J. (2011). How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences Discussion, 8, 1–47.

    Article  Google Scholar 

  • Seibert, J., Stendahl, J., & Sørensen, R. (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141, 139–148.

    Article  CAS  Google Scholar 

  • Shapiro, C. A., & Kranz, W. L. (1992). Comparison of auger and core soil sampling methods to determine soil nitrate under field conditions. Journal of Productive Agriculture, 5, 358–362.

    Article  Google Scholar 

  • Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155–176.

    Article  CAS  Google Scholar 

  • Skopp, J. M. (2000). Physical properties of primary particles. In M. E. Sumner (Ed.), Handbook of soil science (pp. A3–A17). Boca Raton: CRC Press.

    Google Scholar 

  • Smith, P. (2004). How long before a change in soil organic carbon can be detected? Global Change Biology, 10, 1878–1883.

    Article  Google Scholar 

  • Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling and Agroecosystems, 81, 169–178.

    Article  Google Scholar 

  • Smith, P., Smith, J., Wattenbach, M., Meyer, J., Lindner, M., Zaehle, S., Hiederer, R., Jones, R., Montanarella, L., Rounsevell, M., Reginster, I., & Kankaanpää, S. (2006). Projected changes in mineral soil carbon of European forests, 1990-2100. Canadian Journal of Soil Science, 86, 159–169.

    Article  CAS  Google Scholar 

  • Smith, P., Chapman, S. J., Scott, W. A., Black, H. I. J., Wattenbach, M., Milne, R., Campbell, C. D., Lilly, A., Ostle, N., Levy, P. E., Lumsdon, D. G., Millard, P., Towers, W., Zaehle, S., & Smith, J. U. (2007). Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978-2003. Global Change Biology, 13, 2605–2609.

    Article  Google Scholar 

  • Soil Survey Staff (2010). Keys to soil taxonomy (11th ed.). Washington, DC: USDA/NRCS. U.S. Government Printing Office.

    Google Scholar 

  • Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65–105.

    Article  Google Scholar 

  • Stolbovoy, V., Montanarella, L., Filippi, N., Jones, A., Gallego, J., & Grassi, G. (2007). Soil sampling protocol to certify the changes of organic carbon stock in mineral soil of the European Union. Version 2. EUR 21576 EN/2. 56 pp. Luxenbourg: Office for Official Publications of the European Communities.

  • Tamminen, P., & Derome, J. (2005). Temporal trends in chemical parameters of upland forest soils in southern Finland. Silva Fennica, 39, 313–330.

    Article  Google Scholar 

  • Tamminen, P., & Starr, M. R. (1990). A survey of forest soil properties related to soil acidification in southern Finland. In P. Kauppi, K. Kenttämies, & P. Anttila (Eds.), Acidification in Finland (pp. 231–247). Berlin - Heidelberg: Springer-Verlag.

    Google Scholar 

  • Tamminen, P., & Starr, M. (1994). Bulk density of forested mineral soils. Silva Fennica, 28, 53–60.

    Article  Google Scholar 

  • Tobin, B., Black, K., McGurdy, L., & Nieuwenhuis, M. (2007). Estimates of decay rates of components of coarse woody debris in thinned Sitka spruce forests. Forestry, 80, 455–469.

    Article  Google Scholar 

  • Van Remortel, R. D., & Shields, D. A. (1993). Comparison of clod and core methods for determination of soil bulk density. Communication of Soil Science of Plant Analyses., 24, 2517–2528.

    Article  Google Scholar 

  • Vandecasteele, B., De Vos, B., Muys, B., & Tack, F. M. G. (2005). Rates of forest floor decomposition and soil forming processes as indicators of forest ecosystem functioning on a polluted dredged sediment landfill. Soil Biology and Biochemistry, 37, 761–769.

    Article  CAS  Google Scholar 

  • Vanguelova, E. I., Nortcliff, S., Moffat, A. J., & Kennedy, F. (2005). Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant and Soil, 270, 233–247.

    Article  CAS  Google Scholar 

  • Vanguelova, E., Broadmeadow, S., Anderson, R., Yamulki, S., Randle, T., Nisbet, T., & Morison, J. (2012). A strategic assessment of afforested peat resources in Wales (141pp). Wales: Report for the Forestry Commission.http://fcnotes/pdf/Peatland_Wales_Report_2012.pdf/$FILE/Peatland_Wales_Report_2012.pdf

  • Vanguelova, E. I., Nisbet, T. R., Moffat, A. J., Broadmeadow, S., Sanders, T. G. M., & Morison, J. I. L. (2013). A new evaluation of carbon stocks in British forest soils. Soil Use and Management, 29, 169–181.

    Article  Google Scholar 

  • Vanguelova, E. I. (2015). Changes in soil carbon stocks due to afforestation. Scottish Forestry Alliance Project. Interim report. Forest Research report, 21 October 2015.

  • Vejre, H., Callesen, I., Vesterdal, L., & Raulund-Rasmussen, K. (2003). Carbon and nitrogen in Danish Forest soils—contents and distribution determined by soil order. Soil Science Society of America Journal, 67, 335–343.

    Article  CAS  Google Scholar 

  • Velmurugan, A., Krishan, G., Dadhwal, V. K., Kumar, S., Swarnam, T. P., & Saha, S. K. (2009). Harmonizing soil organic carbon estimates in historical and current data. Current Science, 97, 554–558.

    CAS  Google Scholar 

  • Vesterdal, L. (2011). Sampling of soil for assessment of soil carbon stocks. FunDivEUROPE (FP7) field protocol V1.0, http://project.fundiveurope.eu/wp-content/uploads/Sampling_Protocol_Sampling-of-soil-for-assessment-of-soil-carbon-stocks_Mar-2011.pdf. Accessed 14 Oct 2016.

  • Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255, 35–48.

    Article  Google Scholar 

  • Vesterdal, L., Elberling, B., Christiansen, J. R., Callesen, I., & Schmidt, I. K. (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264, 185–196.

    Article  Google Scholar 

  • Vincent, K. R., & Chadwick, O. A. (1994). Synthezising bulk density for soils with abundant rock fragments. Soil Science Society of America Journal, 58, 455–464.

    Article  Google Scholar 

  • Viro, P. (1952). On the determination of stoniness. Communications Instituti Forestalis Fenniae, 40, 23.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wang, X. J., Smethurst, P. J., & Herbert, A. M. (1996). Relationships between three measures of organic matter or carbon in soils of eucalypt plantations in Tasmania. Australian Journal of Soil Research, 34, 545–553.

    Article  Google Scholar 

  • Webster, K. L., Creed, I. F., Beall, F. D., & Bourbonnière, R. A. (2011). A topographic template for estimating soil carbon pools in forested catchments. Geoderma, 160, 457–467.

    Article  CAS  Google Scholar 

  • Wilding, L. P., Drees, L. R., & Nordt, L. C. (2000). Spatial variability: enhancing the mean estimate of organic and inorganic carbon in a sampling unit. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment methods for soil carbon (pp. 69–86). Boca Raton, FL: CRC press.

    Google Scholar 

  • Wirth, C., Schwalbe, G., Tomczyk, S., Schulze, E.-D., Schumacher, J., Vetter, M., Böttcher, H., Weber, G., & Weller, G. (2004). Dynamik der Kohlenstoffvorräte und -flüsse in den Wäldern Thüringens. Mitteilungen der Thüringer Landesanstalt für Wald, Jagd und Fischerei in Zusammenarbeit mit dem Max-Planck-Institut für Biogeochemie, Heft 23. Jena, Gotha.

  • Woldendorp, G., & Keenan, R. J. (2005). Coarse woody debris in Australian forest ecosystems: a review. Austral Ecology, 30, 834–843.

    Article  Google Scholar 

  • Yoo, K., Armundson, R., Heimsath, A. M., & Dietrich, W. E. (2006). Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma, 130, 47–65.

    Article  CAS  Google Scholar 

  • Young, R., Wilson, B. R., McLeod, M., & Alston, C. (2005). Carbon storage in the soils and vegetation of contrasting land uses in northern New South Wales, Australia. Australian Journal of Soil Research, 43, 21–31.

    Article  CAS  Google Scholar 

  • Zirlewagen, D. (2003). Developing a sampling concept for the test area Thuringia with regard to the particular (existing) data base situation. Kenzingen, 2003 (unpublished CarboInvent report).

Download references

Acknowledgment

The authors would like to acknowledge the EU COST Action FP0803 “Belowground carbon turnover in European forests” for providing the platform and financial help for meetings where this review was initiated and further discussed and progressed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Vanguelova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanguelova, E.I., Bonifacio, E., De Vos, B. et al. Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales—review and recommendations. Environ Monit Assess 188, 630 (2016). https://doi.org/10.1007/s10661-016-5608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5608-5

Keywords

Navigation