Skip to main content
Log in

Cowpea pod (Vigna unguiculata) biomass as a low-cost biosorbent for removal of Pb(II) ions from aqueous solution

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The use of cowpea pod (CPP) biomass for the removal of Pb(II) ions from aqueous solution was investigated. The effects of factors such as dosage concentration (0.2 to 1.6 g L−1), pH (2 to 8), contact time (5 to 120 min), metal ion concentrations (10 to 80 mg L−1) and temperature (20 to 50 °C) were examined through batch studies. The biosorption data conformed best to the Langmuir model at the three working temperatures (20, 30 and 40 °C) as revealed by the correlation coefficients (R 2) which were greater than 0.940. The maximum sorption capacity of the CPP for Pb(II) was 32.96 mg g−1 at 313 K. Furthermore, the kinetic data fitted well to the pseudo-second-order model as it had the lowest sum of square error (SSE) values and correlation coefficients close to unity (R 2 > 0.999). The thermodynamic parameters (ΔG°, ΔS° and ΔH°) showed that the biosorption process was spontaneous, feasible and endothermic. The results obtained in the present study indicated that cowpea pod biomass could be used for the effective removal of Pb(II) from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

References

  • Bhatti, H., & Amin, M. (2013). Removal of zirconium(IV) from aqueous solution by Coriolus versicolor: equilibrium and thermodynamic study. Ecological Engineering, 51, 178–180.

    Article  Google Scholar 

  • Bhatti, H. N., & Hamid, S. (2013). Removal of uranium(VI) from aqueous solutions using Eucalyptus citriodora distillation sludge. International journal of Environmental Science and Technology, 11(3), 813–822. doi:10.1007/s13762-013-0267-3.

    Article  Google Scholar 

  • Chigondo, F., & Nyamunda, B. (2013). Removal of lead(II) and copper(II) ions from aqueous solution by baobab (Adononsia digitata) fruit shells biomass. IOSR Journal of Applied Chemistry, 5(1), 43–50 Retrieved from http://www.iosrjournals.org/iosr-jac/papers/vol5-issue1/G0514350.pdf.

    Article  Google Scholar 

  • Clark, A. (2007). Managing cover crops profitably. In Sustainable Agriculture Network (3 rd, pp. 125–129). Beltsville.

  • Dada, A. O., Ojediran, J. O., & Olalekan, A. P. (2013). Sorption of Pb2+ from aqueous solution unto modified rice husk: isotherms studies. Advances in Physical Chemistry, 2013, 1–6.

    Article  Google Scholar 

  • Davis, D.W., Oelke, E.A., Oplinger, E.S., Doll, J.D., Hanson, C.V., & Putnam, D.H. (1991). Cowpea. Alternative Field Crops Manual. University of Wisconsin-Extension, Cooperative Extension University of Minnesota: Center for Alternative Plant and Animal Products and the Minnesota Extension Service.

  • Duran, A., Soylak, M., & Tuncel, S. A. (2008). Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. Journal of Hazardous Materials, 155(1–2), 114–120. doi:10.1016/j.jhazmat.2007.11.037.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 384–470.

    Google Scholar 

  • Geethamani, C. K., Ramesh, S. T., Gandhimathi, R., & Nidheesh, P. V. (2014). Alkali-treated fly ash for the removal of fluoride from aqueous solutions. Desalination and Water Treatment, 52, 19–21.

    Article  Google Scholar 

  • Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. Journal of Colloid and Interface Science, 342(2), 533–539. doi:10.1016/j.jcis.2009.10.074.

    Article  CAS  Google Scholar 

  • Guyo, U., Mhonyera, J., & Moyo, M. (2014). Pb(II) adsorption from aqueous solutions by raw and treated biomass of maize stover—a comparative study. Process Safety and Environmental Protection, 93(June), 192–200. doi:10.1016/j.psep.2014.06.009.

    Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Ji, K., Kim, J., Lee, M., Park, S., Kwon, H. J., Cheong, H. K., Jang, J. Y., Kim, D. S., Yu, S., Kim, Y. W., Lee, K. Y., Yang, S. O., Jhung, I. J., Young, W. O., Paek, D. H., Hong, Y. C., & Choi, K. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution (Barking, Essex : 1987), 178, 322–328. doi:10.1016/j.envpol.2013.03.031.

    Article  CAS  Google Scholar 

  • Kanu, S. A., Moyo, M., Khamlich, S., & Jonathan, O. (2015). Adsorption of cadmium from aqueous solution using rooibos shoots as adsorbent. Toxicological & Environmental Chemistry, (April), 37–41. doi:10.1080/02772248.2015.1030666.

  • Kausar, A., Bhatti, H. N., & MacKinnon, G. (2013). Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Colloids and surfaces. B, Biointerfaces, 111, 124–133. doi:10.1016/j.colsurfb.2013.05.028.

    Article  CAS  Google Scholar 

  • Kelly-Vargas, K., Cerro-Lopez, M., Reyna-Tellez, S., Bandala, E. R., & Sanchez-Salas, J. L. (2012). Biosorption of heavy metals in polluted water, using different waste fruit cortex. Physics and Chemistry of the Earth, Parts A/B/C, 37-39, 26–29. doi:10.1016/j.pce.2011.03.006.

    Article  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Meena, A. K., Mishra, G. K., Rai, P. K., Rajagopal, C., & Nagar, P. N. (2005). Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. Journal of Hazardous Materials, 122(1–2), 161–170. doi:10.1016/j.jhazmat.2005.03.024.

    Article  CAS  Google Scholar 

  • Moyo, M., Chikazaza, L., Nyamunda, B. C., & Guyo, U. (2013). Adsorption batch studies on the removal of Pb(II) using maize tassel based activated carbon. Journal of Chemistry, 2013.

  • Moyo, M., Guyo, U., Mawenyiyo, G., Zinyama, N. P., & Nyamunda, B. C. (2015b). Marula seed husk (Sclerocarya birrea) biomass as a low cost biosorbent for removal of Pb(II) and Cu(II) from aqueous solution. Journal of Industrial and Engineering Chemistry, 27, 126–132. doi:10.1016/j.jiec.2014.12.026.

    Article  CAS  Google Scholar 

  • Moyo, M., Sikwila, T. L., Sebata, E., Nyamunda, B. C., & Guyo, U. (2015a). Equilibrium, kinetic, and thermodynamic studies on biosorption of Cd(II) from aqueous solution by biochar. Research on Chemical Intermediates. doi:10.1007/s11164-015-2089-z.

    Google Scholar 

  • Muhammad, N. Z., Raziya, N., & Muhammad, A. H. (2007). Biosorption of nickel from protonated rice bran. Journal of Hazardous Materials, 143, 478–485.

    Article  Google Scholar 

  • Nath, K., Panchani, S., Bhakhar, M. S., & Chatrola, S. (2013). Preparation of activated carbon from dried pods of Prosopis cineraria with zinc chloride activation for the removal of phenol. Environmental Science and Pollution Research, 20(6), 4030–4045.

    Article  CAS  Google Scholar 

  • Nharingo, T., Ziwurawa, M., & Guyo, U. (2015). Exploring the use of cactus Opuntia Ficus Indica in the biocoagulation–flocculation of Pb(II) ions from wastewaters. Journal of Environmental Science and Technology. doi:10.1007/s13762-015-0815-0.

    Google Scholar 

  • Obregón-Valencia, D., & del Sun-Kou, M. R. (2014). Comparative cadmium adsorption study on activated carbon prepared from aguaje (Mauritia flexuosa) and olive fruit stones (Olea europaea L.). Journal of Environmental Chemical Engineering, 2(4), 2280–2288. doi:10.1016/j.jece.2014.10.004.

    Article  Google Scholar 

  • Rao, C. N., Subbarayudu, K., Vijaya, Y., & Venkata Subbaiah, M. (2014). Adsorption of Ni(II) from aqueous solution by activated carbons derived from tobacco stem adsorption of Ni(II) from aqueous solution by activated carbons derived from tobacco stem. Desalination and Water Treatment, 1–8. doi:10.1080/19443994.2014.910837.

  • Saleem, M., Wongsrisujarit, N., & Boonyarattanakalin, S. (2015). Removal of nickel(II) ion by adsorption on coconut copra meal biosorbent. Desalination and Water Treatment, 1–13. doi:10.1080/19443994.2015.1005155.

  • Salehi, P., Tajabadi, F. M., Younesi, H., & Dashti, Y. (2014). Optimization of lead and nickel biosorption by Cystoseira trinodis (brown algae) using response surface methodology. Clean - Soil, Air, Water, 42(3), 243–250. doi:10.1002/clen.201100429.

    Article  CAS  Google Scholar 

  • Sari, A., Mendil, D., Tuzen, M., & Soylak, M. (2008). Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 144(1), 1–9. doi:10.1016/j.cej.2007.12.020.

    Article  CAS  Google Scholar 

  • Sari, A., & Tuzen, M. (2008). Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 160(2–3), 349–355. doi:10.1016/j.jhazmat.2008.03.005.

    Article  CAS  Google Scholar 

  • Wang, L., Zhang, J., Zhao, R., Li, Y., Li, C., & Zhang, C. (2010). Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: kinetics, isotherms, pH, and ionic strength studies. Bioresource Technology, 101(15), 5808–5814. doi:10.1016/j.biortech.2010.02.099.

    Article  CAS  Google Scholar 

  • Wong, K. K., Lee, C. K., Low, K. S., & Haron, M. J. (2003). Removal of Cu and Pb by tartaric acid modfied rice husk from aqueous solution. Chemosphere, 50, 23–28.

    Article  CAS  Google Scholar 

  • World Health Organisation (2006). Guidelines for Drinking-water Quality (Vol. 1).

  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C., Xie, G. X., & Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. The Science of the Total Environment, 424, 1–10. doi:10.1016/j.scitotenv.2012.02.023.

    Article  CAS  Google Scholar 

  • Yuvaraja, G., Krishnaiah, N., Subbaiah, M. V., & Krishnaiah, A. (2014). Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids and Surfaces B: Biointerfaces, 114, 75–81.

    Article  CAS  Google Scholar 

  • Zvinowanda, C. M., Okonkwo, J. O., Sekhula, M. M., Agyei, N. M., & Sadiku, R. (2009). Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. Journal of Hazardous Materials, 164(2–3), 884–891. doi:10.1016/j.jhazmat.2008.08.110.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the Midlands State University Research Board for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Guyo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guyo, U., Moyo, M. Cowpea pod (Vigna unguiculata) biomass as a low-cost biosorbent for removal of Pb(II) ions from aqueous solution. Environ Monit Assess 189, 47 (2017). https://doi.org/10.1007/s10661-016-5728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5728-y

Keywords

Navigation