Skip to main content
Log in

A geochemical analogy between the metal sources in Kuwait Bay and territorial sea water of Kuwait

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The sea water serves as a source for desalination and shelter for dependent biota. To understand the sources of metal in Kuwait Bay and the open sea, samples were collected and analyzed for metals like B, Li, Sr, Hg, Pb, Ba, Fe, Zn, Mn, Be, Cd, Co, Cr, Ni, Se, V, Al, Mo, and As. The comparison of Bay and Seawater shows that most of the metals were higher in sea water. Samples were collected in two different transects in the territorial sea water (TSW), the northern, and the southern transects. The heavy metal evaluation index and degree of contamination calculated for Bay and TSW show that they are contaminated, and the degree was higher in TSW. The variation of metal concentration along the transects in TSW reflects three different behaviors; (1) few metals decrease from the shore, (2) few increases from the shore, and (3) others show no significant trend. The statistical analysis of the data shows a representation of five factors for bay water and six for TSW indicating the complexity in sources of metal in TSW. The analysis infers the metal contamination due to petroleum products, and oxidation-reduction cycles are predominant in TSW. But, tidal influence along with dustfall plays a key role in the metal contamination of bay waters. Apart from these, desalination rejects and domestic sewage effluents are common sources contributing metals to both the environment. It is also observed that the suspended sediments play a significant role in the leaching, adsorption, and distribution of metals. The extraneous process has a predominant control over the distribution of the metals in TSW than the Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abouhend, A. S., & El-Moselhy, K. M. (2015). Spatial and seasonal variations of heavy metals in water and sediments at the northern Red Sea coast. American Journal of Water Resources, 3(3), 73–85.

    CAS  Google Scholar 

  • Abu-Hilal, A. H., & Al-Najjar, T. (2004). Litter pollution on the Jordanian shores of the Gulf of Aqaba (Red Sea). Marine Environmental Research, 58(1), 39–63.

    CAS  Google Scholar 

  • Al-Abdulghani, E., El-Sammak, A., & Sarawi, M. (2013). Environmental assessment of Kuwait Bay: an integrated approach. Journal of Coastal Conservation, 17(3), 445–462.

    Google Scholar 

  • Al-Ami, M. Y., Al-Nakib, S. M., Ritha, N. M., Nouri, A. M., & Al-Assina, A. (1987). Water quality index applied to the classification and zoning of Al-Jaysh canal, Bagdad, Iraq. Journal of Environmental Science and Health, Part A, (22), 305–319.

  • Al-Anzi, B., Abusam, A., & Shahalam, A. (2012). Assessment of wastewater reuse in Kuwait and its impact on amounts of pollutants discharged into the sea. Journal of Environmental Protection, 3, 935.

    CAS  Google Scholar 

  • Al-Ghadban, A. N., & El-Sammak, A. (2005). Sources, distribution and composition of the suspended sediments, Kuwait Bay, Northern Arabian Gulf. Journal of Arid Environments, 60(4), 647–661.

    Google Scholar 

  • Al-Ghadban, A. N., Al-Majed, N., & Al-Muzaini, S. (2002). The state of marine pollution in Kuwait: Northern Arabian Gulf. Technology, 8(1–2), 7–26.

    Google Scholar 

  • Al-Ghadban, A. N., Saeed, T., Al-Dousari, A. M., Al-Shemmari, H., Al-Mutairi, M., (1999). Preliminary assessment of the impact of drainage of Iraqi marches on Kuwait’s northern marine environment. Part I. Physical manipulation. Water Science Technology 40(4), 75–87.

  • Alkas, F. B., Shaban, J. A., Sukuroglu, A. A., Kurt, M. A., Battal, D., & Saygi, S. (2017). Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake, Cyprus. Environmental Monitoring and Assessment, 189(10), 516. https://doi.org/10.1007/s10661-017-6222-x.

    Article  CAS  Google Scholar 

  • Al Ketbi, F. S., Isnasious, E. Z., & Al Mahyas, A. M. (1993). Practical observations on reverse osmosis plants including raw water contamination problems, different intake stations and permeator performance. Desalination, 93(1-3), 259–272.

    CAS  Google Scholar 

  • Al-Mutairi, N., Abahussain, A., & El-Battay, A. (2014). Spatial and temporal characterizations of water quality in Kuwait Bay. Marine Pollution Bulletin, 83(1), 127–131.

    CAS  Google Scholar 

  • Al-Muzaini, S., Samhan, O., & Hamoda, M. F. (1991). Sewage-related impact on Kuwait’s marine environment—a case study. Water Science and Technology, 23(1–3), 181–189.

    CAS  Google Scholar 

  • Al-Muzaini, S., Beg, M., Muslamani, K., & Al-Mutairi, M. (1999). The quality of marine water around a sewage outfall. Water Science and Technology, 40(7), 11–15.

    CAS  Google Scholar 

  • Al-Najjar, T., Rasheed, M., Ababneh, Z., Ababneh, A., & Al-Omarey, H. (2011). Heavy metals pollution in sediment cores from the Gulf of Aqaba, Red Sea. Natural Science, 3(09), 775.

    CAS  Google Scholar 

  • Alosairi, Y., & Pokavanich, T. (2017). Residence and transport time scales associated with Shatt Al-Arab discharges under various hydrological conditions estimated using a numerical model. Marine Pollution Bulletin, 118(1–2), 85–92.

    CAS  Google Scholar 

  • Al-Sarawi, M. A., Massoud, M. S., Khader, S. R., & Bou-Olyan, A. H. (2002). Recent trace metal levels in coastal waters of Sulaibikhat Bay, Kuwait. Technology, 8, 27–38.

    Google Scholar 

  • Al-Sarawi, H. A., Jha, A. N., Al-Sarawi, M. A., & Lyons, B. P. (2015). Historic and contemporary contamination in the marine environment of Kuwait: an overview. Marine Pollution Bulletin, 100(2), 621–628.

    CAS  Google Scholar 

  • Ang, C. C., & Abdul, A. S. (1991). Aqueous surfactant washing of residual oil contamination from sandy soil. Groundwater Monitoring & Remediation, 11(2), 121–127.

    CAS  Google Scholar 

  • ANZECC (1992). Australian water quality guidelines for fresh and marine waters. National Water Quality Management Strategy Paper No 4, Australian and New Zealand Environment and Conservation Council, Canberra.

  • Backman, B., Bodis, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1997). Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36, 55–64. https://doi.org/10.1007/s002540050320.

    Article  Google Scholar 

  • Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392.

    CAS  Google Scholar 

  • BOBLME (2011). Country Report on Pollution—Malaysia. BOBLME 2011-Ecology-11.

  • Bruland, K. W. (1983). Trace elements in sea water. In J. P. Riley & R. Chester (Eds.), III Chemical oceanography (Vol. 8, pp. 157–220). London: Academic Press.

  • Brumsack, H. J. (2006). The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 344–361.

    Google Scholar 

  • Bu-Olayan, A. H., & Al-Yakoob, S. (1998). Lead, nickel and vanadium in seafood: an exposure assessment for Kuwaiti consumers. Science of the Total Environment, 223(2–3), 81–86.

    CAS  Google Scholar 

  • Bu-Olayan, A. H., & Subrahmanyam, M. N. V. (1997). Accumulation of copper, nickel, lead and zinc by snail, Lunella coronatus and pearl oyster, Pinctada radiata from the Kuwait coast before and after the gulf war oil spill. Science of the Total Environment, 197(1–3), 161–165.

    CAS  Google Scholar 

  • Bu-Olayan, A. H., & Subrahmanyam, M. N. V. (1998). Trace metal concentrations in the crab Macrophthalmus depressus and sediments on the Kuwait coast. Environmental Monitoring and Assessment, 53(2), 297–304.

    CAS  Google Scholar 

  • Bu-Olayan, A. H., & Thomas, B. V. (2001). Heavy metal accumulation in the gastropod, Cetithium Scabridum L. , from the Kuwait Coast. Environmental monitoring and assessment, 68(2), 187–195.

    CAS  Google Scholar 

  • Bu-Olayan, A. H., & Thomas, B. V. (2004). Effects of trace metals, harmful algal blooms, nutrients and hydrological variables to mullet Liza klunzingeri in Kuwait Bay. Biosciences Biotechnology Research Asia, 2, 1–8.

    Google Scholar 

  • Bu-Olayan, A. H., & Thomas, B. V. (2012). Dispersion model on PM 2.5 fugitive dust and trace metals levels in Kuwait Governorates. Environmental Monitoring and Assessment, 184(3), 1731–1737.

    CAS  Google Scholar 

  • Bu-Olayan, A. H., & Thomas, B. V. (2014). Dispersion model and bioaccumulation factor validating trace metals in sea bream inhabiting wastewater drain outfalls. International journal of Environmental Science and Technology, 11(3), 795–804.

    CAS  Google Scholar 

  • Bu-Olayan, A. H., Subrahmanyam, M. N. V., Al-Sarawi, M., & Thomas, B. V. (1998). Effects of the Gulf War oil spill in relation to trace metals in water, particulate matter, and PAHs from the Kuwait Coast. Environment International, 24(7), 789–797.

    CAS  Google Scholar 

  • Bu-Olayan, A. H., Al-Hassan, R., Thomas, B. V., & Subrahmanyam, M. N. V. (2001a). Impact of trace metals and nutrients levels on phytoplankton from the Kuwait coast. Environment International, 26(4), 199–203.

    CAS  Google Scholar 

  • Bu-Olayan, A. H., Al-Hassan, R., & Thomas, B. V. (2001b). Trace metal toxicity to phytoplankton of Kuwait coastal waters. Ecotoxicology, 10(3), 185–189.

    CAS  Google Scholar 

  • Canadian Council of Resource and Environment Ministers (CCREM). (1987) Canadian water quality guidelines. Water Quality Branch, Environment Canada, Ottawa, Ont. (updated in April, 1992).

  • Cassella, R. J., de Sant'Ana, O. D., & Santelli, R. E. (2002). Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(12), 1967–1978.

    Google Scholar 

  • CCME. (1999). Canadian sediment quality guidelines for the protection of aquatic life. Canadian Environmental Quality Guidelines, Canadian Council of Ministers for the Environment, 1999.

  • Cizdziel, J., & Zhou, X. (2005). Sources and concentrations of mercury and selenium in compartments within the Las Vegas wash during a period of rapid change. Environmental Monitoring and Assessment, 107(1–3), 81–99.

    CAS  Google Scholar 

  • Clark, A. J., & Jones, K. (1992). Cobalt-mediated aryl radical cyclisations: a formal synthesis of physovenine. Tetrahedron, 48(33), 6875–6882.

    CAS  Google Scholar 

  • Dames, & More. (1983). Studies for Subiya area Kuwait Bay and development of electrical networks. Part 1. Hydraulic studies and aquatic biology. Ministry of Electricity and Water, Kuwait

  • Darwish, M. A., & Al-Najem, N. (2005). The water problem in Kuwait. Desalination, 177(1–3), 167–177.

    CAS  Google Scholar 

  • de Mora, S., Fowler, S. W., Wyse, E., & Azemard, S. (2004). Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Marine Pollution Bulletin, 49(5–6), 410–424.

    Google Scholar 

  • de Mora, S., Tolosa, I., Fowler, S. W., Villeneuve, J. P., Cassi, R., & Cattini, C. (2010). Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea Area during 2005. Marine Pollution Bulletin, 60(12), 2323–2349.

    Google Scholar 

  • Dellwig, O., Beck, M., Lemke, A., Lunau, M., Kolditz, K., Schnetger, B., & Brumsack, H. J. (2007). Non-conservative behaviour of molybdenum in coastal waters: coupling geochemical, biological, and sedimentological processes. Geochimica et Cosmochimica Acta, 71(11), 2745–2761.

    CAS  Google Scholar 

  • Edet, A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo–Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal, 57, 295–304. https://doi.org/10.1023/B:GEJO.0000007250.92458.de.

    Article  Google Scholar 

  • Edet, A. E., Merkel, B. J., & Offiong, O. E. (2003). Trace element hydrochemical assessment of the Calabar Coastal Plain Aquifer, southeastern Nigeria using statistical methods. Environmental Geology, 44(2), 137–149.

    CAS  Google Scholar 

  • Eken, M. D., & Akman, B. (2018). Assessment of heavy metal pollution of seston from freshwater resources poured into the Northeast Mediterranean region. Environmental Monitoring and Assessment, 190(5). https://doi.org/10.1007/s10661-018-6642-2.

  • Fiedler, S., Siebe, C., Herre, A., Roth, B., Cram, S., & Stahr, K. (2009). Contribution of oil industry activities to environmental loads of heavy metals in the Tabasco Lowlands, Mexico. Water, Air, and Soil Pollution, 197, 35–47.

    CAS  Google Scholar 

  • Filby, R. H., & Olsen, S. D. J. (1994). A comparison of instrumental neutron activation analysis and inductively coupled plasma-mass spectrometry for trace element determination in petroleum geochemistry. Radioanaytical and Nuclear Chemistry, 80, 285–294.

    Google Scholar 

  • Flegal, A. R., Smith, G. J., Gill, G. A., Sanudo-Wilhelmy, S., & Anderson, L. C. D. (1991). Dissolved trace element cycles in the San Francisco Bay estuary. Marine Chemistry, 36(1–4), 329–363.

    CAS  Google Scholar 

  • Georgopoulos, P. G., Roy, A., Yonone-Lioy, M. J., Opiekun, R. E., & Lioy, P. J. (2001). Environmental copper: its dynamics and human exposure issues. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 4(4), 341–394.

    CAS  Google Scholar 

  • Ghannoum, M. A., Al-Sarawi, M., Alyan, A. A., & Baca, B. (1991). Microbiological water quality along the Kuwait waterfront project, Kuwait. International Journal of Environmental Studies, 37(1–2), 65–71.

    Google Scholar 

  • Ghobrial, F., Lionel, M., Patel, B., & Awad, A. (1987). Assessment of raw sewage and treated effluent characteristics in Kuwait. Kuwait institute for scientific research, Report No. KISR 2406B, Kuwait.

  • Harish, B., Chidambaram, S., & Al-Khalid, A. (2018). Occurrence of hypersaline groundwater along the coastal aquifers of Kuwait. Desalination, 436, 15–27.

    Google Scholar 

  • Hart, B. T. (1982). Australian water quality criteria for heavy metals.

  • Hashim, A., & Hajjaj, M. (2005). Impact of desalination plants fluid effluents on the integrity of seawater, with the Arabian Gulf in perspective. Desalination, 182(1–3), 373–393.

    CAS  Google Scholar 

  • Herath, D., Pitawala, A., Gunatilake, J., & Iqbal, M. C. (2018). Using multiple methods to assess heavy metal pollution in an urban city. Environmental Monitoring and Assessment, 190(11). https://doi.org/10.1007/s10661-018-7016-5.

  • Igunnu, E. T., & Chen, G. Z. (2012). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177.

    Google Scholar 

  • Jimenez, V. B., Detres, Y., Armstrong, R. A., & Gioda, A. (2009). Characterization of African dust (PM2.5) across the Atlantic Ocean during AEROSE 2004. Atmospheric Environment, 43(16), 2659–2664.

    Google Scholar 

  • Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370.

    CAS  Google Scholar 

  • Khalaf, F. I., Al-Ghadban, A., Al-Saleh, S., & Al-Omran, L. (1982). Sedimentology and mineralogy of Kuwait bay bottom sediments, Kuwait—Arabian Gulf. Marine Geology, 46(1–2), 71–99.

    Google Scholar 

  • Khalaf, F. I., Al-Kadi, A., & Al-Saleh, S. (1985). Mineralogical composition and potential sources of dust fallout deposits in Kuwait, northern Arabian Gulf. Sedimentary Geology, 42, 255–278.

    Google Scholar 

  • Lambrakis, N., Antonakos, A., & Panagopoulos, G. (2004). The use of multicomponent statistical analysis in hydrogeological environmental research. Water Research, 38(7), 1862–1872.

    CAS  Google Scholar 

  • Leybourne, M. I., & Cameron, E. M. (2008). Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chemical Geology, 247(1–2), 208–228.

    CAS  Google Scholar 

  • Li, J., Dong, H., Zhang, D., Han, B., Zhu, C., Liu, S., & Li, X. (2015). Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China. Marine Pollution Bulletin, 96(1–2), 485–490.

    CAS  Google Scholar 

  • Literathy, P., Morel, G., Zarba, M. A., Samhan, O., Bloushi, A., Hashash, H., Matrouk, K., & Jacob, P. G. (1992). Petroleum compounds in the marine Environment of Kuwait. Report No. KISR 4054. Kuwait.

  • Massoud, M. S., Al-Abdali, F., & Al-Ghadban, A. N. (1998). The status of oil pollution in the Arabian Gulf by the end of 1993. Environment International, 24(1–2), 11–22.

    CAS  Google Scholar 

  • Metwally, M. S., Al-Muzaini, S., Jacob, P. G., Bahloul, M., Urushigawa, Y., Sato, S., & Matsmura, A. (1997). Petroleum hydrocarbons and related heavy metals in the near-shore marine sediments of Kuwait. Environment International, 23(1), 115–121.

    CAS  Google Scholar 

  • MPW (2006) “Treatment plant data,” (Personal Communication, MPW Staff).

  • Mukhopadhyay, A., Al-Haddad, M., Al-Otaibi, M., & Al-Senafy. (2007). Occurrence of hydrogen sulfide in the ground water of Kuwait. Environmental Geology, 52, 1151–1161.

    CAS  Google Scholar 

  • Nadkarni, R. A. (1991). The quest for quality in the laboratory. Analytical Chemistry, 63, 675A±682A.

  • Naser, H. A. (2013). Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Marine Pollution Bulletin, 72(1), 6–13.

    CAS  Google Scholar 

  • Neelamani, S. (2017). Coastal erosion and accretion in Kuwait–problems and management strategies. Ocean & Coastal Management.

  • Neelamani, S., Al-Salem, K., & Rakha, K. (2006). Extreme water waves in the UAE territorial waters. Emirates Journal for Engineering Research, 11(2), 37–46.

  • Neelamani, S., & Al-Shatti, F. (2014). The expected sea-level rise scenarios and its impacts on the Kuwaiti coast and estuarine wetlands. International Journal of Ecology & Development™, 29(3), 32–43.

    Google Scholar 

  • New South Wales Health (2000). Profile of the Nursing Workforce in New South Wales. Statewide Services Development Branch. Sydney: New South Wales Health.

  • Nimmo, M., Van den Berg, C. M. G., & Brown, J. (1989). The chemical speciation of dissolved nickel, copper, vanadium and iron in Liverpool Bay, Irish Sea. Estuarine, Coastal and Shelf Science, 29(1), 57–74.

    CAS  Google Scholar 

  • Norisuye, K., Ezoe, M., Nakatsuka, S., Umetani, S., & Sohrin, Y. (2007). Distribution of bioactive trace metals (Fe, Co, Ni, Cu, Zn and Cd) in the Sulu Sea and its adjacent seas. Deep Sea Research Part II: Topical Studies in Oceanography, 54(1–2), 14–37.

    CAS  Google Scholar 

  • Nubert-Chetan, M., & Gafu, C. (2008). DINAMICA REPERTORIULUI MUZICAL al ISTROROMÂNILOR din CROATIA. DIMENSIUNI ALE CONSERVĂRII ŞI REVALORIZĂRII. Anuarul Institutului de Etnografie şi Folclor Constantin Brăiloiu, 19.

  • Olsen, S. D., Filby, R. H., Brekke, T., & Isaksen G. H. (1995). Determination of trace elements in petroleum exploration samples by inductively coupled mass spectrometry and instrumental neutron activation analysis. Analyst, 120, 1379±1390.

  • Otim, O., Juma, T., & Savinelli, R. (2018). The effect of a massive wastewater discharge on nearshore ocean chemistry. Environmental Monitoring and Assessment, 190(4). https://doi.org/10.1007/s10661-018-6530-9.

  • Panigrahi, J. K., & Tripathy, J. K. (2011). Numerical simulation of advection-dispersion for monitoring thermal plume re-circulation in a shallow coastal environment. Applied Ecology and Environmental Research, 9(4), 341–354.

    Google Scholar 

  • Papatheodorou, G., Demopoulou, G., & Lambrakis, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193(3–4), 759–776.

    Google Scholar 

  • Petrenko, V. I., & Dorogochinskaya, V. A. (1995). Change in the microelemental composition of crude oil containing dissolved formation gases. Petroleum Chemistry, 35(6), 480–488.

    Google Scholar 

  • Pokavanich, T., & Alosairi, Y. (2014). Summer flushing characteristics of Kuwait Bay. Journal of Coastal Research, 30(5), 1066–1073.

    Google Scholar 

  • Pourkerman, M., Amjadi, S., Beni, A. N., Lahijani, H., & Mehdinia, A. (2017). Evaluation of metal contamination in the Mand River delta, Persian Gulf. Marine Pollution Bulletin, 117(1–2), 499–506.

    Google Scholar 

  • Prasanna, M. V., Praveena, S. M., Chidambaram, S., Nagarajan, R., & Elayaraja, A. (2012). Evaluation of water quality pollution indices for heavy metal contamination monitoring: a case study from Curtin Lake, Miri City, East Malaysia. Environmental Earth Sciences, 67(7), 1987–2001.

    CAS  Google Scholar 

  • Readman, J. W., Bartocci, J., Tolosa, I., Fowler, S. W., Oregioni, B., & Abdulraheem, M. Y. (1996). Recovery of the coastal marine environment in the Gulf following the 1991 war-related oil spills. Marine Pollution Bulletin, 32(6), 493–498.

    CAS  Google Scholar 

  • Reynolds, R. M. (1993). Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 27, 35–59.

    Google Scholar 

  • Riley, J. P., & Chester, R. (1989). Introduction to marine chemistry (p 465). Great Britain: St. Edmundsbury Press.

  • Roach, R. W., Carr, R. S., & Howard, C. L. (1993). An assessment of produced water impactsat two sites in Gaveslton Bay system, united states fish and wild life service. Houstan, Texas: Clear lake field office.

  • Romero-Murillo, P., Espejo, W., Barra, R., & Orrego, R. (2017). Embryo–larvae and juvenile toxicity of Pb and Cd in Northern Chilean scallop Argopecten purpuratus. Environmental Monitoring and Assessment, 190(1). https://doi.org/10.1007/s10661-017-6373-9.

  • Sadiq, M. (1992). Toxic metal chemistry in marine environments (p. 390). New York: Marcel Dekker.

    Google Scholar 

  • Sadiq, M. (2002). Metal contamination in sediments from a desalination plant effluent outfall area. Science of the Total Environment, 287(1–2), 37–44.

    CAS  Google Scholar 

  • Sadiq, M., & McCain, J C. (1993). The Gulf War aftermath: an environmental tragedy, Boston.

  • Saeed, T., Afrin, R., Al Muyeed, A., & Sun, G. (2012). Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. Chemosphere, 88(9), 1065–1073.

    CAS  Google Scholar 

  • Saeed, T., Al-Shimmari, F., Al-Mutairi, A., & Abdullah, H. (2015). Spatial assessment of the sewage contamination of Kuwait’s marine areas. Marine Pollution Bulletin, 94(1–2), 307–317.

    CAS  Google Scholar 

  • Saleh, A., Al-Ruwaih, F., & Shehata, M. (1999). Hydrogeochemical processes operating within the main aquifers of Kuwait. Journal of Arid Environments, 42(3), 195–209.

    Google Scholar 

  • Samahan, O., Ghobrial, F., Al-Muzaini, S., & Hamoda, M. F. (1990). Wasterwater sludge charactersitics in relation to potential dewatering Technologies - A case Study. Journal of Environmental Science and Health, Part A, 2564, 367–379.

  • Shatti, J. A., & Abdullah, T. H. (1999). Marine pollution due to wastewater discharge in Kuwait. Water Science and Technology, 40(7), 33–39.

    Google Scholar 

  • Shahalam, A., Zahra, B. M. A., & Jaradat, A. (1998). Wastewater irrigation effect on soil, crop and environment: a pilot scale study at Irbid, Jordan. Water Air Soil Pollution, 106, 425–428.

    CAS  Google Scholar 

  • Shenwen, C., N. Z., Li, Y., Ziwei, S., ZAhiting, X., Zhang, Y., & Yuntao, Z. (2012). Metals in the tissue of two fish species from rare and endemic fish nature reserve in the upper reaches of the Yangtze rive , China. Bulletin of Environmental Contamination and Toxicology, 88(6), 922–927.

  • Shriadah, M. M. (1998). Impacts of an oil spill on the marine environment of the United Arab Emirates along the Gulf of Oman. Marine Pollution Bulletin, 36(11), 876–879.

    CAS  Google Scholar 

  • Shriadah, M. A. (1999). Oil contamination along oil tanker routes off the United Arab Emirates (the Arabian Gulf and the Gulf of Oman). Bulletin of Environmental Contamination and Toxicology, 63(2), 203–210.

    CAS  Google Scholar 

  • Shriadah, M. M. A. (2000). Levels and distribution of petroleum hydrocarbons in the coastal waters and sediments of the United Arab Emirates in the Arabian Gulf and the Gulf of Oman. Water, Air, and Soil Pollution, 119(1–4), 247–256.

    CAS  Google Scholar 

  • Shriadah, M. A., Okbah, M. A., & El-Deek, M. S. (2004). Trace metals in the water columns of the Red Sea and the Gulf of Aqaba, Egypt. Water, Air, and Soil Pollution, 153(1–4), 115–124.

    CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2017). Molybdenum in natural waters: a review of occurrence, distributions and controls. Applied Geochemistry, 84, 387–432.

    CAS  Google Scholar 

  • Smith, D., Gwiazda, R., Bowler, R., Roels, H., Park, R., Taicher, C., et al. (2007). Biomarkers of Mn exposure in humans. American Journal of Industrial Medicine., 50, 801–811.

    CAS  Google Scholar 

  • Sondervan, P. J. (2001). The relationship of calcium loss with trace element concentrations in seawater life systems. Bulletin de l’Institut Océanographique. Monaco, n° spécial 20, fascicule, 1.

  • Sousa, J. C., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F., & Silva, A. M. (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 344, 146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058.

    Article  CAS  Google Scholar 

  • Stinger, J. B., De Haan, H. P. M., Guicherit, R., Dekkers, C. P. A., & Daane, M. L. (2000). Determination of cadmium, zinc, copper, chromium and arsenic in crude oil cargoes. Environmental Pollution, 107(3), 451–464.

  • Stubblefield, W. A., Brinkman, S. E., Davies, P. H., & Garrison, T. D. (1997). Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta). Environmental Toxicology and Chemistry, 16, 2082–2089.

    CAS  Google Scholar 

  • Tarique, Q., Burger, J., & Reinfelder, J. R. (2012). Metal concentrations in organs of the clam Amiantis umbonella and their use in monitoring metal contamination of coastal sediments. Water, Air, & Soil Pollution, 223(5), 2125–2136.

    CAS  Google Scholar 

  • Tomar, M., Abdullah, T. H. A., & Abdullah, J. H. A. (1995). Effect of aeration on generation and emission of hydrogen sulfide in wet wells of lifting stations. Water, Air, and Soil Pollution, 81(3–4), 385–399.

    CAS  Google Scholar 

  • Turner, R. K., Subak, S., & Adger, W. N. (1996). Pressures, trends, and impacts in coastal zones: Interactions between socioeconomic and natural systems. Environmental Management, 20(2), 159–173.

    Google Scholar 

  • Vinagradov, V. (1973). Structure of dust storms from ITOS-I TV images obtained over Iraq and the Gulf of Persia. Moscow: Moscow Institute of Aerospace Method.

    Google Scholar 

  • Wake, H. (2005). Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science, 62(1–2), 131–140.

    CAS  Google Scholar 

  • Wang, S. Y., Hipps, L., Gillies, R. R., & Yoon, J. H. (2014). Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophysical Research Letters, 41(9), 3220–3226.

    Google Scholar 

  • Welch, A. W., Lico, M. S., & Hughes, J. L. (1988). Arsenic in ground water of the Western United States. Ground Water, 26(3), 334–347.

    Google Scholar 

  • Yang, Z., Wang, T., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.

    Google Scholar 

  • Yang, X., Liu, J., Mc Grouther, K., Huang, H., Lu, K., Guo, X., et al. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23(2), 974–984.

    CAS  Google Scholar 

  • Yesim, O. E. (2012). New assessment of heavy metal contamination in an eutrophicated bay (inner Izmir Bay, Turkey). Turkish Journal of Fisheries and Aquatic Sciences, 12(1), 121–141.

    Google Scholar 

  • Yokoyama, Y., Guichard, F., Reyss, J. L., & Van, N. H. (1978). Oceanic residence times of dissolved beryllium and aluminum deduced from cosmogenic tracers 10Be and 26Al. Science, 201(4360), 1016–1017.

    CAS  Google Scholar 

  • Zhang, H., Zhou, Q., Chang, F., Pan, H., Liu, X. F., Li, H., et al. (2015). Production and fuel properties of biodiesel from Firmiana platanifolia Lf as a potential non-food oil source. Industrial Crops and Products, 76, 768–771.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Kuwait Institute for Scientific Research (KISR), Kuwait, for the financial assistance and to Water Research Center of KISR, for their support in implementation of the study in both lab and field. The authors would also like to thank IAEA for their in-kind support extended for this study though WM068C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chidambaram Sabarathinam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabarathinam, C., Bhandary, H. & Al-Khalid, A. A geochemical analogy between the metal sources in Kuwait Bay and territorial sea water of Kuwait. Environ Monit Assess 191, 142 (2019). https://doi.org/10.1007/s10661-019-7219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7219-4

Keywords

Navigation