Skip to main content
Log in

USA-scale patterns in wetland water quality as determined from the 2011 National Wetland Condition Assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water quality is a central component of ecological assessments but less well characterized in wetlands than other waterbody types. The 2011 National Wetland Condition Assessment, spanning freshwater and brackish wetlands across the conterminous USA, provided an unprecedented opportunity to examine water quality patterns across broad wetland types and geographic scales. Surface water samples were obtained from 634 (56%) of sites visited. Total nitrogen (TN), total phosphorus (TP), planktonic chlorophyll (CHLA), and specific conductance (SPCOND) ranged 4 orders of magnitude across sites and were inter-correlated. Woody versus herbaceous vegetation type was an important classifier, with herbaceous sites having standing water more often and generally higher pH, nutrients, and CHLA. Nutrient ratios spanned a range from P-limited to N-limited in most biogeographic regions, and increasing TP was associated with decreasing TN:TP ratios. Compared to national-scale data for other waterbody types (lakes, streams, marine nearshore), wetlands had generally higher TN and TP but not higher CHLA. Differences among biogeographic regions in water quality were concordant between inland wetlands and lakes, and between marine-coast wetlands and the marine nearshore. Associations of TN, TP, and CHLA to percent agriculture or natural land were stronger for the watershed scale than for smaller concentric buffer scales, suggesting that wetlands are influenced by landuse some distance away. SPCOND was related to landuse in inland wetlands but reflected seawater influence in marine-coast wetlands. Water quality exhibits the same general patterns and responses across wetlands as across other waterbody types and thus can provide a basis for ecological classification and condition assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Albert, D. A., Wilcox, D. A., Ingram, J., & Thompson, T. A. (2005). Hydrogeomorphic classification for Great Lakes coastal wetlands. Journal of Great Lakes Research, 31, 129–146.

    Google Scholar 

  • Bedford, B., Walbridge, M. R., & Aldous, A. (1999). Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology, 80, 2151–2169.

    Google Scholar 

  • Bowden, W. B. (1987). The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry, 4, 313–348.

    CAS  Google Scholar 

  • Brazner, J. C., Danz, N. P., Trebitz, A. S., Niemi, G. J., Regal, R. R., Hollenhorst, T., Host, G. E., Reavie, E. D., Brown, T. N., Hanowski, J. M., Johnston, C. A., Johnson, L. B., Howe, R. W., & Ciborowski, J. J. (2007). Responsiveness of Great Lakes wetland indicators to human disturbances at multiple spatial scales: a multi-assemblage assessment. Journal of Great Lakes Research, 33, 42–66.

    Google Scholar 

  • Bricker, S. B., Ferreira, J. G., & Simas, T. (2003). An integrated methodology for assessment of estuarine trophic status. Ecological Modeling, 169, 39–60.

    CAS  Google Scholar 

  • Brinson, M. M., & Rheinhardt, R. (1996). The role of reference wetlands in functional assessment and mitigation. Ecological Applications, 6, 69–76.

    Google Scholar 

  • Brooks, R. P., Brinson, M. M., Havens, K. J., Hershner, C. S., Rheinhardt, R. D., Wardrop, D. H., Whigham, D. F., Jacobs, A. D., & Rubbo, J. M. (2011). Proposed hydrogeomorphic classification for wetlands of the Mid-Atlantic Region, USA. Wetlands, 31, 207–219.

    Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Google Scholar 

  • Carter, V. (1986). An overview of the hydrologic concerns related to wetlands in the United States. Canadian Journal of Botany, 64, 364–374.

    Google Scholar 

  • Childers, D. L., & Day, J. W. (1991). The dilution and loss of wetland function associated with conversion to open water. Wetlands Ecology and Management, 1, 163–171.

    Google Scholar 

  • Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253.

    CAS  Google Scholar 

  • Crosbie, B., & Chow-Fraser, P. (1999). Percentage land use in the watershed determines the water and sediment quality of 22 marshes in the Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences, 56, 1781–1791.

    Google Scholar 

  • Dahl, T. E., & Bergeson, M. T. (2009). Technical procedures for conducting status and trends of the Nation’s 178 wetlands. Washington DC: U.S. Fish and Wildlife Service, Division of Habitat and Resource Conservation.

    Google Scholar 

  • Day, R. H., Williams, T. M., & Swarzenski, C. M. (2007). Hydrology of tidal freshwater forested wetlands of the Southeastern United States. In W. H. Conner, T. W. Doyle, & K. W. Krauss (Eds.), Ecology of tidal freshwater forested wetlands of the Southeastern United States (pp. 29–63). Dordrecht: Springer.

    Google Scholar 

  • Day, J. W., Christian, R. R., Boesch, D. M., Yáñez-Arancibia, A., Morris, J., Twilley, R. R., Naylor, L., & Schaffner, L. (2008). Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts, 31, 477–491.

    Google Scholar 

  • Detenbeck, N. E., Taylor, D. L., Lima, A., & Hagley, C. (1996). Temporal and spatial variability in water quality of wetlands in the Minneapolis/St. Paul, MN metropolitan area: implications for monitoring strategies and designs. Environmental Monitoring and Assessment, 40, 11–40.

    CAS  Google Scholar 

  • Devlin, M., Painting, S., & Best, M. (2007). Setting nutrient thresholds to support an ecological assessment based on nutrient enrichment, potential primary production and undesirable disturbance. Marine Pollution Bulletin, 55, 65–73.

    CAS  Google Scholar 

  • Euliss, N. H., Mushet, D. M., Newton, W. E., Otto, C. R., Nelson, R. D., LaBaugh, J. W., Scherff, E. J., & Rosenberry, D. O. (2014). Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations. Journal of Hydrology, 513, 490–503.

    Google Scholar 

  • Faulkner, S. (2004). Urbanization impacts on the structure and function of forested wetlands. Urban Ecosystems, 7, 89–106.

    Google Scholar 

  • Findlay, C. S., & Houlahan, J. (1997). Anthropogenic correlates of species richness in southeastern Ontario wetlands. Conservation Biology, 11, 1000–1009.

    Google Scholar 

  • Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography, 45, 1213–1223.

    CAS  Google Scholar 

  • Haidary, A., Amiri, B. J., Adamowski, J., Fohrer, N., & Nakane, K. (2013). Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resources Management, 27, 2217–2229.

    Google Scholar 

  • Herlihy, A. T., & Sifneos, J. C. (2008). Developing nutrient criteria and classification schemes for wadeable streams in the conterminous US. Journal of the North American Benthological Society, 27, 932–948.

    Google Scholar 

  • Herlihy, A. T., Stoddard, J. L., & Johnson, C. B. (1998). The relationship between stream chemistry and watershed land cover data in the mid-Atlantic region, US. In Biogeochemical investigations at watershed, landscape, and regional scales (pp. 377–386). Dordrecht: Springer.

    Google Scholar 

  • Herlihy, A. T., Kamman, N. C., Sifneos, J. C., Charles, D., Enache, M. D., & Stevenson, R. J. (2013). Using multiple approaches to develop nutrient criteria for lakes in the conterminous USA. Freshwater Science, 27, 932–948.

    Google Scholar 

  • Hill, B. H., Elonen, C. M., Jicha, T. M., Cotter, A. M., Trebitz, A. S., & Danz, N. P. (2006). Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshwater Biology, 51, 1670–1683.

    CAS  Google Scholar 

  • Homer, C. H., Fry, J. A., & Barnes, C. A. (2012). The national land cover database. U.S. Geological Survey Fact Sheet, 2012–3020, 4 p.

  • Hornung, R. W., & Reed, L. D. (1990). Estimation of average concentration in the presence of nondetectable values. Applied Occupational and Environmental Hygiene, 5, 46–51.

    CAS  Google Scholar 

  • Houlahan, J. E., & Findlay, C. S. (2004). Estimating the ‘critical’ distance at which adjacent land-use degrades wetland water and sediment quality. Landscape Ecology, 19, 677–690.

    Google Scholar 

  • Hughes, B. B., Haskins, J. C., Wasson, K., & Watson, E. (2011). Identifying factors that influence expression of eutrophication in a central California estuary. Marine Ecology Progress Series, 439, 31–43.

    CAS  Google Scholar 

  • Hurd, T. M., Rynal, D. J., & Schwintzer, C. R. (2001). Symbiotic N2 fixation of Alnus incana ssp. rugosa in shrub wetlands of the Adirondack Mountains, New York, USA. Oecologia, 126, 94–103.

    CAS  Google Scholar 

  • Johnson, W. C., Millett, B. V., Gilmanov, T., Voldseth, R. A., Guntenspergen, G. R., & Naugle, D. E. (2005). Vulnerability of northern prairie wetlands to climate change. BioScience, 55, 863–872.

    Google Scholar 

  • Johnston, C. A. (1991). Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Critical Reviews in Environmental Science and Technology, 21, 491–565.

    Google Scholar 

  • Johnston, C. A., & Brown, T. N. (2013). Water chemistry distinguishes wetland plant communities of the Great Lakes coast. Aquatic Botany, 104, 111–120.

    CAS  Google Scholar 

  • Jones, J. R., Obrecht, D. V., Perkins, B. D., Knowlton, M. F., Thorpe, A. P., Watanabe, S., & Bacon, R. R. (2008). Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes: an analysis of regional limnology. Lake and Reservoir Management, 24, 155–180.

    Google Scholar 

  • Jordan, S. J., Stoffer, J., & Nestlerode, J. A. (2011). Wetlands as sinks for reactive nitrogen at continental and global scales: a meta-analysis. Ecosystems, 14, 144–155.

    CAS  Google Scholar 

  • Karstens, S., Buczko, U., & Glatzel, S. (2015). Phosphorus storage and mobilization in coastal Phragmites wetlands: influence of local-scale hydrodynamics. Estuarine, Coastal and Shelf Science, 164, 124–133.

    CAS  Google Scholar 

  • Kaufmann, P. R., Hughes, R. M., Van Sickle, J., Whittier, T. R., Seeliger, C. W., & Paulsen, S. G. (2014). Lakeshore and littoral physical habitat structure: a field survey method and its precision. Lake and Reservoir Management, 30, 157–176.

    CAS  Google Scholar 

  • Keough, J. R., Thompson, T. A., Guntenspergen, G. R., & Wilcox, D. A. (1999). Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes. Wetlands, 19, 821–834.

    Google Scholar 

  • King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E., Jordan, T. E., Kazyak, P. F., & Hurd, M. K. (2005). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications, 15, 137–153.

    Google Scholar 

  • Kurtz, J. C., Detenbeck, N. D., Engle, V. D., Ho, K., Smith, L. M., Jordan, S. J., & Campbell, D. (2006). Classifying coastal waters: current necessity and historical perspective. Estuaries and Coasts, 29, 107–123.

    Google Scholar 

  • Larsen, D. P. (1997). Sample survey design issues for bioassessment of inland aquatic ecosystems. Human and Ecological Risk Assessment: An International Journal, 3, 979–991.

    Google Scholar 

  • Lee, S. Y., Dunn, R. J. K., Young, R. A., Connolly, R. M., Dale, P. E. R., Dehayr, R., Lemckert, C. J., McKinnon, S., Powell, B., Teasdale, P. R., & Welsh, D. T. (2006). Impact of urbanization on coastal wetland structure and function. Austral Ecology, 31, 149–163.

    Google Scholar 

  • Lhomme, J., Bouvier, C., & Perrin, J. L. (2004). Applying a GIS-based geomorphological routing model in urban catchments. Journal of Hydrology, 299, 203–216.

    Google Scholar 

  • Lopez, R. D., & Fennessy, M. S. (2002). Testing the floristic quality index as an indicator of wetland condition. Ecological Applications, 12, 487–497.

    Google Scholar 

  • Lougheed, V. L., Parker, C. A., & Stevenson, R. J. (2007). Using non-linear responses of multiple taxonomic groups to establish criteria indicative of wetland biological condition. Wetlands, 27, 96–109.

    Google Scholar 

  • McIver, R., Milweski, I., & Lotze, H. K. (2015). Land use and nitrogen loading in seven estuaries along the southern Gulf of St. Lawrence, Canada. Estuarine, Coastal, and Shelf Science, 165, 137–148.

    CAS  Google Scholar 

  • Mensing, D. M., Galatowitsch, S. M., & Tester, J. R. (1998). Anthropogenic effects on the biodiversity of riparian wetlands of a northern temperate landscape. Journal of Environmental Management, 53, 349–377.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands (3rd ed.). Wiley: New York.

    Google Scholar 

  • Morrice, J. A., Danz, N. P., Regal, R. R., Kelly, J. R., Niemi, J. G., Reavie, E. D., Hollenhorst, T., Axler, R. P., Trebitz, A. S., Cotter, A. M., & Peterson, G. S. (2008). Human influences on water quality in Great Lakes coastal wetlands. Environmental Management, 41, 347–357.

    Google Scholar 

  • Morrice, J. A., Trebitz, A. S., Kelly, J. R., Sierszen, M. E., Cotter, A. M., & Hollenhorst, T. (2011). Determining sources of water to Great Lakes coastal wetlands: a classification approach. Wetlands, 31, 1199–1213.

    Google Scholar 

  • Mushet, D. M., Calhoun, A. J., Alexander, L. C., Cohen, M. J., DeKeyser, E. S., Fowler, L., Lane, C. R., Lang, M. W., Rains, M. C., & Walls, S. C. (2015). Geographically isolated wetlands: rethinking a misnomer. Wetlands, 35, 423–431.

    Google Scholar 

  • Olsen, A. R., & Peck, D. V. (2008). Monitoring design and extent estimates for the Wadeable Streams Assessment. Journal of the North American Benthological Society, 27, 822–836.

    Google Scholar 

  • Paerl, H. W. (2009). Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts, 32, 593–601.

    CAS  Google Scholar 

  • Peck, D. V., Olsen, A. R., Weber, M. H., Paulsen, S. G., Peterson, C., & Holdsworth, S. M. (2013). Survey design and extent estimates for the National Lakes Assessment. Freshwater Science, 32, 1231–1245.

    Google Scholar 

  • Read, E. K., Patil, V. P., Oliver, S. K., Hetherington, A. L., Brentrup, J. A., Zwart, J. A., Winters, K. M., Corman, J. R., Nodine, E. R., Woolway, R. I., & Dugan, H. A. (2015). The importance of lake-specific characteristics for water quality across the continental United States. Ecological Applications, 25, 943–955.

    Google Scholar 

  • Sanger, D. M., Arendt, M. D., Chen, Y., Wenner, E. L., Holland, A. F., Edwards, D., & Caffrey, J. (2002). A synthesis of water quality data: National Estuarine Research Reserve System-wide monitoring program (1995–2000). National estuarine research reserve technical report series 2002: 3. South Carolina Department of Natural Resources, Marine Resources Division Contribution No. 500. 135 p.

  • Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480–494.

    Google Scholar 

  • Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 5, 356–363.

    Google Scholar 

  • Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M., & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 105, 11254–11258.

    CAS  Google Scholar 

  • Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10, 126–139.

    CAS  Google Scholar 

  • Smith, V. H. (2006). Response of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnological Oceanography, 51, 377–384.

    CAS  Google Scholar 

  • Smith, R. D., Ammann, A., Bartoldus, C., & Brinson, M. M. (1995). An approach for assessing wetland functions using hydrogeomorphic classification, reference wetlands, and functional indices. Vicksburg: U.S. Army Corps of Engineers, Waterways Experiment Station WRP-DE-9.

    Google Scholar 

  • Stevens, D. L., & Olsen, A. R. (2004). Spatially-balanced sampling of natural resources. Journal of the American Statistical Association, 99, 262–278.

    Google Scholar 

  • Stevenson, R. J., Hill, B. H., Herlihy, A. T., Yuan, L. L., & Norton, S. B. (2008). Algae-P relationships, thresholds, and frequency distributions guide nutrient criterion development. Journal of the North American Benthological Society, 27, 783–799.

    Google Scholar 

  • Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. (2006). Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications, 16, 1267–1276.

    Google Scholar 

  • Strayer, D. L., Beighley, R. E., Thompson, L. C., Brooks, S., Nilsson, C., Pinay, G., & Naiman, R. J. (2003). Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems, 6, 407–423.

    Google Scholar 

  • Sweeney, B. W., & Newbold, J. D. (2014). Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. Journal of the American Water Resources Association, 50, 560–584.

    Google Scholar 

  • Trebitz, A. S., Brazner, J. C., Cotter, A. M., Knuth, M. L., Morrice, J. A., Peterson, G. S., Sierszen, M. E., Thompson, J. A., & Kelly, J. R. (2007). Water quality in Great Lakes coastal wetlands: basin-wide patterns and response to an anthropogenic disturbance gradient. Journal of Great Lakes Research, 33(si3), 67–85.

    CAS  Google Scholar 

  • U.S. EPA. (2009). National lakes assessment: a collaborative survey of the nation’s lakes. Washington DC: U.S. Environmental Protection Agency EPA 841-R-09-001.

    Google Scholar 

  • U.S. EPA. (2010). National lakes assessment: technical appendix. Washington DC: U.S. Environmental Protection Agency EPA 841-R-09-001a.

    Google Scholar 

  • U.S. EPA. (2011a). National wetland condition assessment: field operations manual. Washington DC: U.S. Environmental Protection Agency EPA-843-R-10-001.

    Google Scholar 

  • U.S. EPA. (2011b). National wetland condition assessment: laboratory operations manual. Washington DC: U.S. Environmental Protection Agency EPA-843-R-10-002.

    Google Scholar 

  • U.S. EPA. (2016a). National wetland condition assessment: 2011 technical report. Washington, DC: U.S. Environmental Protection Agency EPA-843-R-15-006.

    Google Scholar 

  • U.S. EPA. (2016b). National coastal condition assessment 2010. Washington DC: United States Environmental Protection Agency EPA/841-R-15-006.

    Google Scholar 

  • Ullah, S., & Faulkner, S. P. (2006). Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley. Ecological Engineering, 28, 131–140.

    Google Scholar 

  • Vadeboncoeur, Y., Jeppesen, E., Zanden, M., Schierup, H. H., Christoffersen, K., & Lodge, D. M. (2003). From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography, 48, 1408–1418.

    Google Scholar 

  • Verhoeven, J. T., Arheimer, B., Yin, C., & Hefting, M. M. (2006). Regional and global concerns over wetlands and water quality. Trends in Ecology and Evolution, 21, 96–103.

    Google Scholar 

  • Wang, L., Lyons, J., Kanehl, P., & Gatti, R. (1997). Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries, 22, 6–12.

    Google Scholar 

  • Wright, C. K., & Wimberly, M. C. (2013). Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences, 110, 4134–4139.

    CAS  Google Scholar 

  • Wullschleger, S. D., Meinzer, F. C., & Vertessy, R. A. (1998). A review of whole-plant water use studies in trees. Tree Physiology, 18, 499–512.

    Google Scholar 

  • Yu, X., Hawley-Howard, J., Pitt, A. L., Wang, J. J., Baldwin, R. F., & Chow, A. T. (2015). Water quality of small seasonal wetlands in the Piedmont ecoregion, South Carolina, USA: effects of land use and hydrological connectivity. Water Research, 73, 98–108.

    CAS  Google Scholar 

  • Yurista, P. M., Kelly, J. R., Miller, S., & Van Alstine, J. (2012). Lake Ontario: nearshore conditions and variability in water quality parameters. Journal of Great Lakes Research, 38, 133–145.

    CAS  Google Scholar 

  • Zedler, J. B. (2003). Wetlands at your service: reducing impacts of agriculture at the watershed scale. Frontiers in Ecology and the Environment, 1, 65–72.

    Google Scholar 

Download references

Acknowledgments

The data from the 2011 NWCA used in this paper resulted from the collective efforts of dedicated field crews, laboratory staff, data management and quality control staff, analysts, and many others from EPA, states, tribes, federal agencies, universities, and other organizations. A.T.H. was supported on this project via an intergovernmental personnel agreement with the US EPA Office of Water. We thank Karen Blocksom and Gregg Serenbetz for water quality data management, Jonathon Launspach for GIS support, and Janet Keough, two anonymous reviewers, and the associate editor for helpful comments. This manuscript has been subjected to Agency review and approved for publication. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the US EPA or any NWCA partner agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anett S. Trebitz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Monitoring Wetlands on a Continental Scale: The Technical Basis for the National Wetland Condition Assessment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trebitz, A.S., Nestlerode, J.A. & Herlihy, A.T. USA-scale patterns in wetland water quality as determined from the 2011 National Wetland Condition Assessment. Environ Monit Assess 191 (Suppl 1), 266 (2019). https://doi.org/10.1007/s10661-019-7321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7321-7

Keywords

Navigation