Skip to main content
Log in

The use of peracetic acid for estrogen removal from urban wastewaters: E2 as a case study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

17β-Estradiol (E2) is a natural estrogen produced by the feminine endocrine system. It is excreted mainly through urine and feces. Exposure to E2 may affect the reproductive system of both animals and humans, especially since the removal of E2 in conventional processes and technologies present in the wastewater treatment plants is not sufficient. Chlorine is one of the most studied and used oxidant worldwide. Although there are studies that demonstrate the endocrine disrupting compounds removal like E2, its reaction with organic matter can originate by-products, namely, trihalomethanes, which are known to have high toxic potential. The main aim of the present study was to evaluate the removal of E2 (50 μg E2 L−1—maximum concentration) using peracetic acid (PAA), a seeming cleaner and innocuous alternative to chlorine. To this end, a series of jar tests were performed, using different peracetic acid concentrations (1, 5, 10, and 15 mg L−1) and contact times (10, 15, and 20 min). The results obtained showed that a peracetic acid concentration of 15 mg L−1 with a contact time of 20 min had a removal efficacy of approximately 100%. The second main goal of this study was to evaluate the ecotoxicological potential of the tested treatments on the zebrafish Danio rerio. Several oxidative stress biomarkers were evaluated, namely glutathione S-transferase, lipid peroxidation, and catalase, besides vitellogenin. Both peracetic acid and E2 caused significant increases in the oxidative stress biomarkers, although this did not lead to increased lipid peroxidation levels. In addition, peracetic acid significantly decreased the estrogenic activity of E2, as indicated by decreased vitellogenin levels. Peracetic acid demonstrated to have great potential as an alternative disinfectant for chlorine treatments, and indications for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: a critical review. Environment International, 99, 107–119.

    CAS  Google Scholar 

  • Ahmed, M., Zhou, J., Ngo, H., Guo, W., Thomaidis, N., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminants removal from wastewater: a critical review. Journal of Hazardous Materials, 323, 274–298.

    CAS  Google Scholar 

  • Antonelli, M., Turolla, A., Mezzanotte, V., & Nurizzo, C. (2013). Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment. Water Science and Technology, 68, 2638–2644.

    CAS  Google Scholar 

  • APHA (2005). Standard methods for the examination of water and wastewater. American Public Health Association. 21st Edition.

  • Auriol, M., Filali-Meknassi, Y., Tyagi, R. D., Adams, C. D., & Surampalli, R. Y. (2006). Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochemistry, 41, 525–539.

    CAS  Google Scholar 

  • Azzellino, A., Antonelli, M., Canziani, R., Malpei, F., Marinetti, M., & Nurizzo, C. (2011). Multivariate modelling of disinfection kinetics: a comparison among three different disinfectants. Desalination and Water Treatment, 29, 128–139.

    CAS  Google Scholar 

  • Baldry, M. G. C., Cavadore, A., French, M. S., Massa, G., Rodrigues, L. M., Schirch, P. F. T., & Threadgold, T. L. (1995). Effluent disinfection in warm climates with peracetic acid. Water Science and Technology, 31, 161–164.

    CAS  Google Scholar 

  • Barreiros, L., Queiroz, J. F., Magalhães, L. M., Silva, A. M. T., & Segundo, M. A. (2016). Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices — a review. Microchemical Journal, 126, 243–262.

    CAS  Google Scholar 

  • Bila, D. M., & Dezotti, M. (2007). Endocrine disruptors in the environment – effects and consequences - Desreguladores endócrinos no meio ambiente: Efeitos e consequências. Quimica Nova, 30, 651–666.

    CAS  Google Scholar 

  • Block, P., Reimers, R., Xu, Y. (2015). Use of peracetic acid as a wastewater disinfectant to eliminate the formation of chlorinated disinfection by-products and inhibit the activity of endocrine disrupting compounds. WEFTEC 2015 Proc. 528–535.

  • Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 238, 229–246.

    Google Scholar 

  • Bonetta, S., Pignata, C., Lorenzi, E., De Ceglia, M., Meucci, L., Gilli, G., & Carraro, E. (2017). Peracetic acid (PAA) disinfection: inactivation of microbial indicators and pathogenic bacteria in a municipal wastewater plant. Water, 9, 427.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  Google Scholar 

  • Caliman, F. A., & Gavrilescu, M. (2009). Pharmaceuticals, personal care products and endocrine disrupting agents in the environment - a review. Clean - Soil, Air, Water., 37, 277–303.

    CAS  Google Scholar 

  • Cavalieri, E., Frenkel, K., & Liehr, J. G. (2000). Estrogens as endogenous genotoxic agents - DNA adducts and mutations. Journal of the National Cancer Institute. Monographs, 27, 75–93.

    CAS  Google Scholar 

  • Cavallini, G. S., Campos, S. X., Souza, J. B., & Vidal, C. M. S. (2013). Evaluation of the physical–chemical characteristics of wastewater after disinfection with peracetic acid. Water, Air, and Soil Pollution, 224, 1752.

    Google Scholar 

  • Chen, Y., Li, M., Yuan, L., Xie, Y., Li, B., Xu, W., Meng, F., & Wang, R. (2017). Growth, blood health, antioxidant status and immune response in juvenile yellow catfish Pelteobagrus fulvidraco exposed to a-ethinylestradiol (EE2). Fish & Shellfish Immunology, 69, 1–5.

    Google Scholar 

  • Chhetri, R. K., Thornberg, D., Berner, J., Gramstad, R., Öjstedt, U., Sharma, A. K., & Andersen, H. R. (2014). Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids. Science of the Total Environment, 490, 1065–1072.

    CAS  Google Scholar 

  • Chupani, L., Stara, A., Velisek, J., & Zuskova, E. (2014). Evaluation of the toxic effect of peracetic acid on grass carp (Ctenopharyngodon idella) juveniles. Neuroendocrinology Letters, 35(Suppl. 2), 86–92.

    Google Scholar 

  • Collivignarelli, M. C., Abbà, A., Benigna, I., Sorlini, S., & Torretta, V. (2017). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10, 86.

    Google Scholar 

  • Cong, L., Dong, F., Crittenden, J. C., Feng, L., Chen, X., & Zhao, T. (2017). Kinetics and mechanism of 17β-estradiol chlorination in a pilot-scale water distribution systems. Chemosphere, 178, 73–79.

    Google Scholar 

  • Coyle, E. E., Ormsbee, L. E., & Brion, G. M. (2014). Peracetic acid as an alternative disinfection technology for wet weather flows. Water Environment Research, 86, 687–697.

    CAS  Google Scholar 

  • Dai, Y., & Liu, C. C. (2017). Detection of 17 β-estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors, 7, 15.

    Google Scholar 

  • Dell’Erba, A., Falsanisi, D., Liberti, L., Notarnicola, M., & Santoro, D. (2007). Disinfection by-products formation during wastewater disinfection with peracetic acid. Desalination, 215, 177–186.

    Google Scholar 

  • Denslow, N. D., Chow, M. C., Kroll, K. J., & Green, L. (1999). Vitellogenin as a biomarker of exposure for estrogen or estrogen mimics. Ecotoxicology, 8, 385–398.

    CAS  Google Scholar 

  • Dias, A. C. V., Gomes, F. W., Bila, D. M., Sant’Anna, G. L., & Dezotti, M. (2015). Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen. Ecotoxicology and Environmental Safety, 120, 41–47.

    CAS  Google Scholar 

  • Diniz, M. S., Maurício, R., Petrovic, M., López de Alda, M., Amaral, L., Peres, I., Barceló, D., & Santana, F. (2010). Assessing the estrogenic potency in a Portuguese wastewater treatment plant using an integrated approach. Journal of Environmental Sciences, 22(10), 1613–1622.

    CAS  Google Scholar 

  • Diniz, M. S., Alves de Matos, A. P., Lourenço, J., Castro, L., Peres, I., Mendonça, E., & Picado, A. (2013). Liver alterations in two freshwater fish species (Carassius auratus and Danio rerio) following exposure to different TiO2 nanoparticles concentrations. Microscopy and Microanalysis, 19(5), 1131–1140.

    CAS  Google Scholar 

  • Du, Y., Lv, X.-T., Wu, Q.-Y., Zhang, D.-Y., Zhou, Y.-T., Peng, L., & Hu, H.-Y. (2017). Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: a review. Journal of Environmental Sciences, 58, 51–63.

    CAS  Google Scholar 

  • EC. (1991). Council Directive of 21 May 1991 concerning urban waste water management (91/271/EEC). European Commission (EC). Official Journal of the European Communities L, 135, 40–52.

    Google Scholar 

  • EC. (2015). Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. European Commission (EC). Official Journal of the European Union L, 78, 40–42.

    Google Scholar 

  • ECDC. Relatório epidemiológico anual 2011. (2011).

  • Elia, A. C., Anastasi, V., & Dörr, A. J. M. (2006). Hepatic antioxidant enzymes and total glutathione of Cyprinus carpio exposed to three disinfectants, chlorine dioxide, sodium hypochlorite and peracetic acid, for superficial water potabilization. Chemosphere, 64, 1633–1641.

    CAS  Google Scholar 

  • Eramo, A., Medina, W. R. M., & Fahrenfeld, N. L. (2017). Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community. Environmental Sciences, 3, 1061–1072.

    CAS  Google Scholar 

  • Falconer, I. R., Chapman, H. F., Moore, M. R., & Ranmuthugala, G. (2006). Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environmental Toxicology, 21, 181–191.

    CAS  Google Scholar 

  • Freese, S. D., & Nozaic, D. J. (2004). Chlorine: is it really so bad and what are the alternatives? Water SA, 30, 566–572.

    CAS  Google Scholar 

  • Gehr, R., Wagner, M., Veerasubramanian, P., & Payment, P. (2003). Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Research, 37, 4573–4586.

    CAS  Google Scholar 

  • Guedes, A. R., Montesdeoca, E. S., Sosa, F. Z., & Santana, R. J. J. (2014). Liquid chromatography methodologies for the determination of steroid hormones in aquatic environmental systems. Trends Environmental and Analytical Chemistry, 3, 14–27.

    Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249, 7130–7139.

    CAS  Google Scholar 

  • Hamid, H., & Eskicioglu, C. (2012). Fate of estrogenic hormones in wastewater and sludge treatment: a review of properties and analytical detection techniques in sludge matrix. Water Research, 46, 5813–5833.

    CAS  Google Scholar 

  • Hassani, G., Babaei, A., Takdastan, A., Shirmardi, M., & Yousefian, F. (2016). Occurrence and fate of 17 beta-estradiol in water resources and wastewater in Ahvaz, Iran. Global NEST Journal, 18, 855–866.

    CAS  Google Scholar 

  • Henao, L. D., Turolla, A., & Antonelli, M. (2018). Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: a review. Chemosphere, 213, 25–40.

    Google Scholar 

  • Holbech, H., Kinnberg, K., Petersen, G. I., Jackson, P., Hylland, K., Norrgren, L., & Bjerregaard, P. (2006). Detection of endocrine disrupters: evaluation of a fish sexual development test (FSDT). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 144, 57–66.

    Google Scholar 

  • Hu, J., Cheng, S., Aizawa, T., Terao, Y., & Kunikane, S. (2003). Products of aqueous chlorination of 17b-estradiol and their estrogenic activities. Environmental Science & Technology, 37, 5665–5670.

    CAS  Google Scholar 

  • IPCS. (2002). Global assessment of the state-of-the-science of endocrine disruptors. World Health Organization, International Programme on Chemical Safety: Geneva.

    Google Scholar 

  • Johansson, L. H., & Borg, L. A. (1988). A spectrophotometric method for determination of catalase activity in small tissue samples. Analytical Biochemistry, 174, 331–336.

    CAS  Google Scholar 

  • Karpova, T., Pekonen, P., Gramstad, R., Öjstedt, U., Laborda, S., Heinonen-Tanski, H., Chávez, A., & Jiménez, B. (2013). Performic acid for advanced wastewater disinfection. Water Science and Technology, 68, 2090–2096.

    CAS  Google Scholar 

  • Kashiwada, S., Ishikawa, H., Miyamoto, N., Ohnishi, Y., & Magara, Y. (2002). Fish test for endocrine-disruption and estimation of water quality of Japanese rivers. Water Research, 36, 2161–2166.

    CAS  Google Scholar 

  • Kitis, M. (2004). Disinfection of wastewater with peracetic acid: a review. Environment International, 30, 47–55.

    CAS  Google Scholar 

  • Luukkonen, T., & Pehkonen, S. O. (2017). Peracids in water treatment: a critical review. Critical Reviews in Environmental Science and Technology, 47(1), 1–39.

    CAS  Google Scholar 

  • Luukkonen, T., Teeriniemi, J., Prokkola, H., RämÖ, J., & Lassi, U. (2014). Chemical aspects of peracetic acid-based wastewater disinfection. Water SA, 40, 73–80.

    Google Scholar 

  • Maurício, R., Dias, R., Ribeiro, V., Fernandes, S., Vicente, A. C., Pinto, M. I., Noronha, J. P., Amaral, L., Coelho, P., & Mano, A. P. (2018). 17α-Ethinylestradiol and 17β-estradiol removal from a secondary urban wastewater using a RBC treatment system. Environmental Monitoring and Assessment, 190, 320.

    Google Scholar 

  • Nollet, L. M. L., Lambropoulo, D. A. (2017). Chromatographic analysis of the environment: mass spectrometry based approaches. CRC Press.

  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

    CAS  Google Scholar 

  • Orozco-Hernández, L., Gómez-Oliván, L. M., Elizalde-Velázquez, A., Natividad, R., Fabian-Castoño, L., & SanJuan-Reyes, N. (2019). 17-β-Estradiol: significant reduction of its toxicity in water treated by photocatalysis. Science of the Total Environment, 669, 955–963.

    Google Scholar 

  • Pal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408, 6062–6069.

    CAS  Google Scholar 

  • Pereira, R. O., Postigo, C., de Alda, M. L., Daniel, L. A., & Barceló, D. (2011). Removal of estrogens through water disinfection processes and formation of by-products. Chemosphere., 82, 789–799.

    CAS  Google Scholar 

  • Prasse, C., Stalter, D., Schulte-Oehlmann, U., Oehlmann, J., & Ternes, T. A. (2015). Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Research, 87, 237–270.

    CAS  Google Scholar 

  • Rhee, J. S., Kim, B. M., Lee, C. J., Yoon, Y. D., Lee, Y. M., & Lee, J. S. (2011). Bisphenol A modulates expression of sex differentiation genes in the self-fertilizing fish, Kryptolebias marmoratus. Aquatic Toxicology, 104, 218–229.

    CAS  Google Scholar 

  • Rizzo, L., Agovino, T., Nahim-Granados, S., Castro-Alférez, M., Fernández-Ibáñez, P., & Polo-López, M. I. (2019). Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: effect on contaminants of emerging concern and antibiotic resistance. Water Research, 149, 272–281.

    CAS  Google Scholar 

  • Rose, J., Holbech, H., Lindholst, C., Nørum, U., Povlsen, A., Korsgaard, B., & Bjerregaard, P. (2002). Vitellogenin induction by 17b-estradiol and 17a-ethinylestradiol in male zebrafish (Danio rerio). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 131, 531–539.

    Google Scholar 

  • Saili, K. S., Corvi, M. M., Weber, D. N., Patel, A. U., Das, S. R., Przybyla, J., Anderson, K. A., & Tanguay, R. L. (2012). Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology, 291, 83–92.

    CAS  Google Scholar 

  • Santoro, D., Gehr, R., Bartrand, T. A., Liberti, L., Notarnicola, M., Dell’Erba, A., Falsanisi, D., & Haas, C. N. (2007). Wastewater disinfection by peracetic acid: assessment of models for tracking residual measurements and inactivation. Water Environment Research, 79, 775–787.

    CAS  Google Scholar 

  • Schiliró, T., Pignata, C., Rovere, R., Fea, E., & Gilli, G. (2009). The endocrine disrupting activity of surface waters and of wastewater treatment plant effluents in relation to chlorination. Chemosphere, 75, 335–340.

    Google Scholar 

  • Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2(1), 21–25.

    Google Scholar 

  • Ting, Y. F., & Praveena, S. M. (2017). Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. Environmental Monitoring and Assessment, 189, 178.

    Google Scholar 

  • UNEP/WHO. (2012). State of the science of endocrine disrupting chemicals—2012. United Nations Environment Programme / World Health Organization: Geneva.

    Google Scholar 

  • Van den Belt, K., Berckmans, P., Vangenechten, C., Verheyen, R., & Witters, H. (2014). Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. Aquatic Toxicology, 66, 183–195.

    Google Scholar 

  • Vilela, C. L. S., Bassin, J. P., & Peixoto, R. S. (2018). Water contamination by endocrine disruptors: impacts, microbiological aspects and trends for environmental protection. Environmental Pollution, 235, 546–559.

    CAS  Google Scholar 

  • Wagner, M., Brumelis, D., & Gehr, R. (2002). Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent. Water Environment Research, 74(1), 33–50.

    CAS  Google Scholar 

  • Xu, N., Xu, Y., Xu, S., Li, J., & Tao, H. (2012). Removal of estrogens in municipal wastewater treatment plants: a Chinese perspective. Environmental Pollution, 165, 215–224.

    CAS  Google Scholar 

  • Zhang, Z., Feng, Y., Gao, P., Wang, C., & Ren, N. (2011). Occurrence and removal efficiencies of eight EDCs and estrogenicity in a STP. Journal of Environmental Monitoring, 13(5), 1366–1373.

    CAS  Google Scholar 

Download references

Funding

The authors are indebted to VALORMED for its financial support to this project. In addition, this project was financed by the Portuguese government (Fundação para a Ciência e Tecnologia, I.P., Portugal) through a postdoc grant (SFRH/BPD/109199/2015) for M. Daam and the research unit CENSE (UID/AMB/04085/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Maurício.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurício, R., Jorge, J., Dias, R. et al. The use of peracetic acid for estrogen removal from urban wastewaters: E2 as a case study. Environ Monit Assess 192, 114 (2020). https://doi.org/10.1007/s10661-020-8079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8079-7

Keywords

Navigation