Skip to main content

Advertisement

Log in

Evaluation of electronic pheromone trap capture conditions for Ips sexdentatus with climatic and temporal factors

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Controlling forest pests to maintain the sustainability of forests and ecosystem balance is one of the interests of modern forestry. In the evaluation of damage risks associated with forest pests, pheromone traps attract attention by providing early warnings. With the development of these traps in line with modern technology, more reliable data are obtained; these data are important in the identification and planning of pest management. In this study, a pheromone trap with electronic control unit was tested under field conditions. The capture of adult Ips sexdentatus under natural conditions during 103 days of the flying period was evaluated; 97.2% of the beetles captured in the trap were the target species. The comparison of the number of beetles recorded by the trap and manual counts revealed that the trap worked with an error margin of approximately 4%. However, no statistically significant difference was noted between these two counting methods. During the study, 59% of the total beetles were captured between May 27 and June 25. The average temperature at the period of the capture was 20.09 °C, average humidity was 66%, and average wind speed was 2.9 m/s. Of the captures, 73.9% occurred in the temperature range of 15–24.9 °C, 61.1% occurred in humidity range of 61–90%, 89.6% occurred at a wind speed of 0.3–5.4 m/s, and 77.3% occurred within the period from sunrise to sunset. When these four parameters were evaluated together, the most strongly associated parameter was daylight, followed by temperature, wind speed, and humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Agbaba, S. N., & Celepirovic, N. (2008). Health condition of the forest vegetation on the island of Veliki Brijun, National Park Brijuni, Croatia. Radovi Šumarskog Fakulteta Univerziteta u Sarajevu, 38, 35–45.

    Google Scholar 

  • Akyol, A., & Tolunay, A. (2006). Principles, indicators and applications of sustainable forest research management in Turkey. Süleyman Demirel University Journal of Natural and Applied Science, 10(2), 221–234.

    Google Scholar 

  • Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., Hood, S., Lichstein, J. M., Macalady, A. K., McDowell, N., Pan, Y., Raffa, K., Sala, A., Shaw, J. D., Stephenson, N. L., Tague, C., & Zeppel, M. (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208, 674–683. https://doi.org/10.1111/nph.13477

    Article  Google Scholar 

  • Annila, E. (1969). Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolytidae). Annales Zoologici Fennici, 6, 161–208.

  • Atkins, M. (1961). A study on the flight of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Scolytidae): III Flight capacity. The Canadian Entomologist, 93(6), 467–474. https://doi.org/10.4039/Ent93467-6

  • Aukema, B. H., Dahlsten, D. L., & Raffa, K. F. (2000). Exploiting behavioral disparities among predators and prey to selectively remove pests: Maximizing the ratio of bark beetles to predators removed during semiochemically based trap-out. Environmental Entomology, 29, 651–660. https://doi.org/10.1603/0046-225X-29.3.651

    Article  Google Scholar 

  • Baker, T. C., & Heath, J. J. (2005). Pheromones-function and use in insect control. Comprehensive Molecular Insect Science, 6(6), 407–459. https://doi.org/10.1016/B0-44-451924-6/00087-9

    Article  CAS  Google Scholar 

  • Baker, T. C. (2008). Use of pheromones in IPM. In: T. Radcliffe, & B. Hutchinson (Eds.), Integrated pest management, (pp. 273–285). Cambridge. https://doi.org/10.1017/CBO9780511626463.022

  • Bakke, A. (1992). Monitoring bark beetle populations: Effects of temperature 1. Journal of Applied Entomology, 114(1–5), 208–211. https://doi.org/10.1111/j.1439-0418.1992.tb01116.x

    Article  Google Scholar 

  • Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., & Whittaker, J. B. (2002). Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x

  • Bassett, M. A., Baumgartner, J. B., Hallett, M. L., Hassan, Y., & Symonds, M. R. (2011). Effects of humidity on the response of the bark beetle Ips grandicollis (Eichhoff) (Coleoptera: Curculionidae: Scolytinae) to synthetic aggregation pheromone. Australian Journal of Entomology, 50(1), 48–51. https://doi.org/10.1111/j.1440-6055.2010.00780.x.

    Article  Google Scholar 

  • Bernhard, R. (1935). Türkiye ormancılığının mevzuatı, tarihi ve vazifeleri. Yük Zir Ens Neşriyatı, Ankara, 15 (in Turkish).

  • Beşceli, O., & Ekici, M. (1969). Doğu ladini (Picea orientalis L.) mıntıkasında Ips sexdentatus’un biyolojisi ve mücadelesi. Ormancılık Araştırma Enstitüsü Yayınları, 32. (in Turkish).

  • Black, S. H., Kulakowski, D., Noon, B. R., & DellaSala, D. (2010). Insects and roadless forests: A scientific review of causes. Consequences and management alternatives, National center for conservation science.

  • Botterweg, P. F. (1982). Dispersal and flight behaviour of the spruce bark beetle Ips typographus in relation to sex, size and fat content. Zeitschrift für Angewandte Entomologie, 94, 466–489. https://doi.org/10.1111/j.1439-0418.1982.tb02594.x

  • Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A., & Godfray, H. C. J. (2013). The consequence of tree pests and diseases for ecosystem services. Science, 342(6160), 1235773. https://doi.org/10.1126/science.1235773

  • Bracalini, M., Croci, F., Ciardi, E., Mannucci, G., Papucci, E., Gestri, G., et al. (2021). Ips sexdentatus mass-trapping: Mitigation of its negative effects on saproxylic beetles larger than the target. Forests, 12(2), 175. https://doi.org/10.3390/f12020175.

    Article  Google Scholar 

  • Bueno, A., Diez, J. J., & Fernández, M. M. (2010). Ophiostomatoid fungi transported by Ips sexdentatus (Coleoptera, Scolytidae) in Pinus pinaster in NW Spain. Silva Fennica, 44, 387–397.

    Article  Google Scholar 

  • Chen, Y., & Seybold, S. J. (2014). Crepuscular flight activity of an invasive insect governed by interacting abiotic factors. PLoS ONE, 9(8), e105945. https://doi.org/10.1371/journal.pone.0105945

    Article  CAS  Google Scholar 

  • Chen, H., Li, Z., & Tang, M. (2010). Laboratory evaluation of flight activity of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Canadian Entomologist, 142, 378–387. https://doi.org/10.4039/n10-018.

    Article  Google Scholar 

  • Chen, Y., Aukema, B. H., & Seybold, S. J. (2020). The effects of weather on the flight of an invasive bark beetle. Pityophthorus Juglandis Insects, 11(3), 156. https://doi.org/10.3390/insects11030156

  • Çiçek, O., Enez, K., Özcan, G. E., & Yildiz, M. (2016). Elektronik denetleme birimli feromon destekli tuzak tasarımı (Versiyon 1) TR Patent 2014 03278, 16 August 2016. (in Turkish).

  • Çiçek, O., Özcan, G. E., Enez, K., & Yildiz, M. (2018). Improving performance of the integrated electronic control unit on pheromone baited traps as a new approach in biotechnological control methods. Fresenius Environmental Bulletin, 27(9), 6279–6283

    Google Scholar 

  • Choi, W. I., & Park, Y. S. (2019). Monitoring, assessment and management of forest insect pests and diseases. Forests, 10, 865. https://doi.org/10.3390/f10100865

    Article  Google Scholar 

  • Donaldson, S., & Seybold, S. (1998). Thinning and sanitation: Tools for the management of bark beetles in the lake tahoe basin (pp. 98–42). University of Nevada Cooperative Extension, Reno, Fact Sheet

    Google Scholar 

  • Ebrahimi, M. A., Khoshtaghaza, M. H., Minaei, S., & Jamshidi, B. (2017). Vision-based pest detection based on SVM classification method. Computers and Electronics in Agriculture, 137, 52–58. https://doi.org/10.1016/j.compag.2017.03.016

    Article  Google Scholar 

  • Eneh, O. C. (2011). Enhancing Africa’s environmental management: Integrated pest management for minimizing of agricultural pesticides pollution. Research Journal of Environmental Sciences, 5, 521–529. https://doi.org/10.3923/rjes2011521529

    Article  CAS  Google Scholar 

  • Faccoli, M., & Buffo, E. (2004). Seasonal variability of sex-ratio in Ips typographus (L.) pheromone traps in a multivoltine population in The Southern Alps. Journal of Pest Science, 77, 123–129. https://doi.org/10.1007/s10340-003-0038-x.

    Article  Google Scholar 

  • Fernández, M. M. (2006). Colonization of fire-damaged trees by Ips sexdentatus (Boerner) as related to the percentage of burnt crown. Entomologica Fennica, 17, 381–386. https://doi.org/10.33338/ef.84361

  • Fettig, C. J., & Hilszczannski, J. (2015). Management strategies for bark beetles in conifer forests. In: Vega FE, Hofstetter RW (eds.). Bark Beetles. Biology and Ecology of Native and Invasive Species. Elsevier, Amsterdam. 555–584.

  • Flint, C. G., McFarlane, B., & Muller, M. (2009). Human dimensions of forest disturbance by insects: An international synthesis. Environmental Management, 43, 1174–1186. https://doi.org/10.1007/s00267-008-9193-4

    Article  Google Scholar 

  • Galko, J., Økland, B., Nikolov, C., Rell, S., & Kunca, A. (2013). Comparison of pheromone traps for monitoring of the European spruce bark beetle. Commissioned report from Skog og landskap, Oppdragsrapport fra Skog og landskap, 9(13).

  • Galko, J., Nikolov, C., Kunca, A., Vakula, J., Gubka, A., Zúbrik, M., Rell, S., & Konôpka, B. (2016). Effectiveness of pheromone traps for the European spruce bark beetle: A comparative study of four commercial products and two new models. Central European Forestry Journal, 62(4), 207–215. https://doi.org/10.1515/forj-2016-0027

    Article  Google Scholar 

  • Gaylord, M. L., Williams, K. K., Hofstetter, R. W., McMillin, J. D., Degomez, T. E., & Wagner, M. R. (2008). Influence of temperature on spring flight initiation for southwestern ponderosa pine bark beetles (Coleoptera: Curculionidae, Scolytinae). Environmental Entomology, 37(1), 57–69. https://doi.org/10.1603/0046-225X(2008)37[57:IOTOSF]2.0.CO;2

    Article  CAS  Google Scholar 

  • Gray, B., Billings, R. F., Gara, R. I., & Johnsey, R. L. (1972). On the emergence and initial flight behaviour of the mountain pine beetle, Dendroctonus ponderosae, in Eastern Washington. Zeitschrift Für Angewandte Entomologie, 71, 250–259. https://doi.org/10.1111/j.1439-0418.1972.tb01745.x.

    Article  Google Scholar 

  • Grégoire, J. C., Raffa, K. F., & Lindgren, B. S. (2015). Economics and politics of bark beetles. In: F.E. Vega, R.W. Hofstetter (Eds.), Bark beetles biology and ecology of native and invasive species (pp. 585–613). London.

  • Gulci, N. (2014) Researches on precision forestry in forest planning. MS thesis, Kahramanmaraş Sütçü İmam University, Institute for Graduate Studies in Science and Technology, Kahramanmaraş, Turkey. p. 264.

  • Haack, R. A. (1985). Voltinism and diurnal emergence-flight patterns of Ips calligraphus (Coleoptera: Scolytidae) in Florida. Florida Entomologist, 68(4), 658–667. https://doi.org/10.2307/3494870

    Article  Google Scholar 

  • Hlásny, T., Krokene, P., Liebhold, A., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K., Schelhaas, M. J., Seidl, R., Svoboda, M., & Viiri, H. (2019). Living with bark beetles: impacts, outlook and management options. From Science to Policy 8, European Forest Institute, 52. https://doi.org/10.36333/fs08

  • Holuša, J., Lukášová, K., & Lubojacký, J. (2012). Comparison of seasonal flight activity of Ips typographus and Ips duplicatus. Scientia Agriculturae Bohemica, 43(3), 109–115.

    Google Scholar 

  • Huddar, S. R., Gowri, S., Keerthana, K., Vasanthi, S., & Rupanagudi, S. R. (2012). Novel algorithm for segmentation and automatic identification of pests on plants using image processing. Proceedings of the Third International Conference on Computing Communication and Networking Technologies, Karur, India. https://doi.org/10.1109/ICCCNT.2012.6396012

  • Jactel, H., & Gaillard, J. (1991). A preliminary study of the dispersal potential of Ips sexdentatus (Boern) (Col., Scolytidae) with an automatically recording flight mill. Journal of Applied Entomology, 112, 138–145. https://doi.org/10.1111/j.1439-0418.1991.tb01039.x.

    Article  Google Scholar 

  • Jeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen-Schmutz, K., Gilioli, G., Miret, J. A. J., MacLeod, A., Navarro, M. N., Niere, B., Parnell, S., Potting, R., Rafoss, T., Rossi, V., Urek, G., Van Bruggen, S., Werf, W. V., West, J., Winter, S., Kertész, V., Aukhojee, M., & Grégoire, J. C. (2017). Pest categorisation of Ips sexdentatus. EFSA Journal, 15(11), 4999. https://doi.org/10.2903/j.efsa.2017.4999

  • Jones, K. L., Shegelski, V. A., Marculis, N. G., Wijerathna, A. N., & Evenden, M. L. (2019). Factors influencing dispersal by flight in bark beetles (Coleoptera: Curculionidae: Scolytinae): From genes to landscapes. Canadian Journal of Forest Research, 49(9), 1024–1041. https://doi.org/10.1139/cjfr-2018-0304

    Article  Google Scholar 

  • Lima, M. C. F., de Almeida Leandro, M. E. D., Valero, C., Coronel, L. C. P., & Bazzo, C. O. G. (2020). Automatic detection and monitoring of insect pests—A review. Agriculture, 10(5), 161.

  • Lindelow, Å., & Schroeder, M. (2001). Spruce bark beetle, Ips typographus (L.), in Sweden: Monitoring and risk assessment. Jounal of Forest Science, 47, 40–42.

    Google Scholar 

  • Lu, C. Y., Rustia, D. J. A., & Lin, T. T. (2019). Generative adversarial network based image augmentation for insect pest classification enhancement. IFAC-PapersOnLine, 52, 1–5. https://doi.org/10.1016/j.ifacol.2019.12.406

    Article  CAS  Google Scholar 

  • Majumdar, A., & Reed, T. (2013). Pheromone traps for monitoring insect pests. Alabama cooperative extension system. Alabama A&M and Auburn, Universities, New March, ANR 1431, 4.

  • Marini, L., Økland, B., Jönsson, A. M., Bentz, B., Carroll, A., Forster, B., Grégoire, J. C., Hurling, R., Nageleisen, L. M., Netherer, S., Ravn, H. P,, Weed, A., & Schroeder, M. (2017). Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 40(12), 1426–1435. https://doi.org/10.1111/ecog.02769

  • Morris, J. L., Cottrell, S., Fettig, C. J., Hansen, W. D., Sherriff, R. L., Carter, V. A., Clear, J. L., Clement, J., DeRose, R. J., Hicke, J. A., Higuera, P. E., Mattor, K. M., Seddon, A. W. R., Seppä, H. T., Stednick, J. D., & Seybold, S. J. (2017). Managing bark beetle impacts on ecosystems and society: Priority questions to motivate future research. Journal of Applied Ecology, 54(3), 750–760. https://doi.org/10.1111/1365-2664.12782

    Article  Google Scholar 

  • Näsi, R., Honkavaara, E., Blomqvist, M., Lyytikäinen-Saarenmaa, P., Hakala, T., Viljanen, N., & Holopainen, M. (2018). Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban Forestry & Urban Greening, 30, 72–83. https://doi.org/10.1016/j.ufug.2018.01.010

    Article  Google Scholar 

  • Öhrn, P., Långström, B., Lindelöw, Å., & Björklund, N. (2014). Seasonal flight patterns of Ips typographus in southern Sweden and thermal sums required for emergence. Agricultural and Forest Entomology, 16(2), 147–157. https://doi.org/10.1111/afe.12044.

    Article  Google Scholar 

  • Oymen, T. (1992). The forest Scolytidae of Turkey. Istanbul Orman Fakültesi Dergisi, 42(1), 77–91.

    Google Scholar 

  • Özcan, G. E., Eroglu, M., & Alkan-Akıncı, H. (2011). Use of pheromone-baited traps for monitoring Ips sexdentatus (Boerner) (Coleoptera: Curculionidae) in oriental spruce stands. African Journal of Biotechnology, 10(72), 16351–16360. https://doi.org/10.5897/AJB11.1709.

    Article  Google Scholar 

  • Özcan, G. E., Çiçek, O., Enez, K., & Yıldız, M. (2014). A new approach to determine the capture conditions of bark beetles in pheromone-baited traps. Biotechnology & Biotechnological Equipment, 28(6), 1057–1064. https://doi.org/10.1080/13102818.2014.974015

    Article  CAS  Google Scholar 

  • Özcan, G. E., Çiçek, O., Enez, K., & Yildiz, M. (2016). Evaluation of the counting success of pheromone-baited trap with electronic control unit. Current Science, 111(1), 192–197. https://doi.org/10.18520/cs/v111/i1/192-197

  • Özcan, G. E. (2017). Assessment of Ips sexdentatus population considering the capture in pheromone traps and their damages under non-epidemic conditions. Šumarski List, 1–2, 47–56.

    Google Scholar 

  • Özcan, G. E., Çiçek, O., Enez, K., & Yıldız, M. (2018). A new design of electronic control unit involving microcontroller to determine important parameters for target species in forest. Environmental Monitoring Assessment, 190, 600. https://doi.org/10.1007/s10661-018-6960-4

    Article  Google Scholar 

  • Östrand, F., & Anderbrant, O. (2003). From where are insects recruited? A new model to interpret catches of attractive traps. Agricultural and Forest Entomology, 5(2), 163–171. https://doi.org/10.1046/j.1461-9563.2003.00174.x

    Article  Google Scholar 

  • Panzavolta, T., Bracalini, M., Bonuomo, L., Croci, F., & Tiber, R. (2014). Field response of non-target beetles to Ips sexdentatus aggregation pheromone and pine volatiles. Journal of Applied Entomology, 138, 586–599. https://doi.org/10.1111/jen.12121.

    Article  CAS  Google Scholar 

  • Pawson, S. M., Marcot, B. G., & Woodberry, O. G. (2017). Predicting forest insect flight activity: A Bayesian network approach. PLoS ONE, 12(9), e0183464. https://doi.org/10.1371/journal.pone.0183464

    Article  CAS  Google Scholar 

  • Pineau, X., Bourguignon, M., Jactel, H., Lieutier, F., & Sallé, A. (2017). Pyrrhic victory for bark beetles: Successful standing tree colonization triggers strong intraspecific competition for offspring of Ips sexdentatus. Forest Ecology and Management, 399, 188–196. https://doi.org/10.1016/j.foreco.2017.05.044.

    Article  Google Scholar 

  • Progar, R.A., Eglitis, A., & Lundquist, J.E. (2009). Some ecological, economic, and social consequences of bark beetle infestations. In The Western Bark Beetle Research Group: A Unique Collaboration with Forest Health Protection: Proceedings of a Symposium at the 2007 Society of American Foresters Conference, October 23-28, 2007, Portland, Oregon (Vol. 784, p. 71). US Department of Agriculture, Forest Service, Pacific Northwest Research Station.

  • Rosenberger, R. S., Bell, L. A., Champ, P. A., & Smith, E. L. (2012). Nonmarket economic values of forest insect pests: An updated literature review. Gen. Tech. Rep. RMRS-GTR-275WWW. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station,  p 46. https://doi.org/10.2737/RMRS-GTR-275

  • Rossi, J. P., Samalens, J. C., Guyon, D., Van Halder, I., Jactel, H., Menassieu, P., & Piou, D. (2009). Multiscale spatial variation of the bark beetle Ips sexdentatus damage in a pine plantation forest (Landes de Gascogne, Southwestern France). Forest Ecology and Management, 257, 1551–1557. https://doi.org/10.1016/j.foreco.2008.12.012.

    Article  Google Scholar 

  • Rustia, D. J. A., Lin, C. E., Chung, J. Y., Zhuang, Y. J., Hsu, J. C., & Lin, T. T. (2020). Application of an image and environmental sensor network for automated greenhouse insect pest monitoring. Journal of Asia-Pacific Entomology, 23, 17–28. https://doi.org/10.1016/j.aspen.2019.11.006

    Article  Google Scholar 

  • Safranyik, L., Linton, D. A., Silversides, R., & McMullen, L. H. (1992). Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand. Journal of Applied Entomology, 113, 441–450. https://doi.org/10.1111/j.1439-0418.1992.tb00687.x.

    Article  Google Scholar 

  • Sarikaya, O., & Avci, M. (2011). Bark beetle fauna (Coleoptera: Scolytinae) of the coniferous forests in the Mediterranean region of Western Turkey, with a new record for Turkish fauna. Turkish Journal of Zoology, 35(1), 33–47. https://doi.org/10.3906/zoo-0901-8

  • Samman, S., & Logan, J. A. (2000). Assessment and response to bark beetle outbreaks in the rocky mountain area: report to congress from forest health protection, Washington Office, Forest Service, US Department of Agriculture. US Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-62

  • Schowalter, T. D. (1986). Ecological strategies of forest insects: The need for a community-level approach to reforestation. New Forests, 1(1), 57–66.

    Article  Google Scholar 

  • Schroeder, L. M., & Weslien, J. (1994). Interactions between the phloem-feeding species Tomicus piniperda (Col.: Scolytidae) and Acanthocinus aedilis (Col.: Cerambycidae) and the predator Thanasimus formicarius (Col.: Cleridae) with special reference to brood production. Entomophaga, 39, 149–157.

    Article  Google Scholar 

  • Schroeder, L. M. (1997). Impact of natural enemies on Tomicus piniperda offspring production. Proceedings: Integrating cultural tactics into the management of bark beetle and reforestation pests. USDA Forest Service General Technical Report NE, 236, 204–214.

    Google Scholar 

  • Schroeder, L. M. (2001). Tree mortality by the bark beetle Ips typographus (L.) in storm-disturbed stands. Integrated Pest Management Reviews, 6(3–4), 169–175. https://doi.org/10.1023/A:1025771318285

  • Sciarretta, A., & Calabrese, P. (2019). Development of automated devices for the monitoring of insect pests. Current Agriculture Research Journal, 7(1), 19–25. https://doi.org/10.12944/CARJ.7.1.03

  • Seedre, M. (2005). Ips sexdentatus damage in Montesquiu Castle Park scots pine stands; overview and management recommendations, applied period project report, Course Master of European Forestry Erasmus Mundus. Supervised by Jordi Jürgens, 14 pp. Barcelona, Spain.

  • Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer, C. P. O. (2018). Forest disturbances under climate change. Nature Climate Change, 7, 395.

    Article  Google Scholar 

  • Sharma, M. (2016). Insect pests of forestry plants and their management. International Journal of Advanced Research, 4(8), 2099–2116. https://doi.org/10.21474/IJAR01/1427

  • Şimşek, Z., Kondur, Y., & Şimşek, M. (2010). The expected effects of the global climate change on bark beetles. BİBAD, 3(2), 149–157.

    Google Scholar 

  • Tommeras, B. A. (1988). The clerid beetle Thanasimus formicarius is attracted to the pheromone of the ambrosia beetle Trypodendron lineatum. Experientia, 44, 536–537.

    Article  CAS  Google Scholar 

  • Vité, J. P., Bakke, A., & Hughes, P. R. (1974). A population attractant for the six-toothed bark beetle Ips sexdentatus. Naturwissenschaften, 61, 365–366.

    Article  Google Scholar 

  • Wallbrink, H., & Koek, F.B. (2009). Historical wind speed equivalents of the Beaufort scale, 1850-1950. KNMI-Memorandum HISKLIM, 13.

  • Warzee, N., Grégoire, J. C. (2003). Thanasimus formicarius (Coleoptera, Cleridae) why a large range of prey for a specialized predator? Proccedings. IUFRO Kanazawa, Forest ınsect population dynamics and host Influences, 16–18.

  • Weber, B. C. (1982). The biology of the ambrosia beetle Xylosandrus germanus (Coleoptera: Scolytidae) and its effects on black walnut. PhD dissertation, Southern Illinois University, Carbondale.

  • Wermelinger, B., & Seifert, M. (1999). Temperature-dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecological Entomology, 24, 103–110. https://doi.org/10.1046/j.1365-2311.1999.00175.x.

    Article  Google Scholar 

  • Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus- A review of recent research. Forest Ecology and Management, 202, 67–82. https://doi.org/10.1016/j.foreco.2004.07.018.

    Article  Google Scholar 

  • Weslien, J. (1992). The arthropod complex associated with Ips typographus (L.) (Coleoptera, Scolytidae): Species composition, phenology, and impact on bark beetle productivity. Entomologica Fennica, 3(4), 205–213.

  • Wijerathna, A. N. (2016). Factors influencing mountain pine beetle (Coleoptera: Curculionidae: Scolytinae) dispersal by flight and subsequent trade-off between beetle flight and reproduction. University of Alberta. https://doi.org/10.7939/R3NZ80V8H

    Article  Google Scholar 

  • Xia, C., Chon, T. S., Ren, Z., & Lee, J. M. (2015). Automatic identification and counting of small size pests in greenhouse conditions with low computational cost. Ecological Informatics, 29, 139–146. https://doi.org/10.1016/j.ecoinf.2014.09.006.

    Article  Google Scholar 

  • Yüksel, B., Tozlu, G., & Şenturk, M. (2000). Important harmful bark beetle species of Sarıkamış Pinus sylvestris L. forests and precautions against them. Eastern Anatolia Forestry Research Institute, Technical Bulletin, 3, 66.

Download references

Acknowledgements

For their support during our study, we would like to thank Dr. Osman Çiçek, Dr. Korhan Enez, and all the personnel at Daday Forest Enterprise.

Author information

Authors and Affiliations

Authors

Contributions

GEO participated in the designing of the study, carried out field study, collected the data, analyzed the data, and write the manuscript. HŞT carried out field study and helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gonca Ece Özcan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özcan, G.E., Tabak, H.Ş. Evaluation of electronic pheromone trap capture conditions for Ips sexdentatus with climatic and temporal factors. Environ Monit Assess 193, 625 (2021). https://doi.org/10.1007/s10661-021-09402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09402-6

Keywords

Navigation