Skip to main content

Advertisement

Log in

Biomonitoring as a potential tool for water quality in tilapia culture: a case study of Baixa Mogiana region of São Paulo State, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The objectives of this study were to test an artificial substrate sampler method for aquaculture ponds and assess the water quality based on the benthic macroinvertebrate community living in fishpond sediment at four farms with tilapia production in the Baixa Mogiana region of São Paulo State, Brazil. Benthic macroinvertebrates were monitored every 15 days for 3 months. Approximately 500,000 organisms distributed in 47 taxa were collected. Chironomidae, Glossiphonidae, Hirudinidae, Libelullidae, Oligochaeta, and Polycentropodidae were present in all collected samples, with the dominance of Chironomidae in the benthic community. Polycentropodidae, a sensitive family to organic pollution, had a greater abundance in fish farms with better environmental conditions. Significant differences in dissolved oxygen and pH were observed among fishponds at different fish farms. Biomonitoring with artificial substrate is a simple and low-cost alternative to monitoring water quality of tilapia culture in fishponds. The artificial substrate sampling method was effective, but the evaluation of more critical conditions of water quality would improve the method and enhance the knowledge of taxa and ecology of macrobenthic organisms in fishponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data will be made publicly available upon publication.

Code availability

Not applicable.

References

  • Ansah, Y. B., Frimpong, E. A., & Amisah, S. (2013). Characterization of potential aquaculture pond effluents, and physico-chemical and microbial assessment of effluent-receiving waters in central Ghana. African Journal of Aquatic Science, 38, 185–192. https://doi.org/10.2989/16085914.2013.767182

    Article  Google Scholar 

  • Baptista, D. F., Buss, D. F., Egler, M. M., Giovanelli, A., Silveira, M. P., & Nessimian, J. L. (2007). A multimetric index based on benthic macroinvertebrates for evaluation of Atlantic Forest stream at Rio de Janeiro State, Brazil. Hydrobiologia, 575, 83–94.

    Article  Google Scholar 

  • Batley, G., & Maher, W. A. (2001). The development and application of ANZEEC and ARMCANZ sediment quality guidelines. Australasian Journal of Ecotoxicology, 7, 81–92.

    Google Scholar 

  • Boyd, C. E., & Tucker, C. S. (1998). Pond aquaculture water quality management. Kluwer Academic Publishers.

    Book  Google Scholar 

  • Brown, K. S., Jr. (1997). Diversity, disturbance, and sustainable use of Neotropical forests: Insects as indicators for conservation. Journal of Insect Conservation, 1, 25–42.

    Article  Google Scholar 

  • Buzby, K. M., & Viadero, R. C., Jr. (2007). Structural and functional aspects of treated mine water and aquaculture effluent streams. Hydrobiologia, 583, 251–263.

    Article  CAS  Google Scholar 

  • Cairns, J. Jr., & Pratt, J. R. (1993). A history of biological monitoring using benthic macroinvertebrates. In: Freshwater biomonitoring and benthic macroinvertebrates. Rosenberg, D. M. and Resh, V. H. (eds.). Chapman and Hall.

  • Camargo, J. A., & Voelz, N. J. (1998). Biotic and abiotic changes along the recovery gradient of two impounded rivers with different impoundment use. Environmental Monitoring and Assessment, 50, 142–158.

    Article  Google Scholar 

  • Cheshire, K., Boyero, L., & Pearson, R. G. (2005). Food webs in tropical Australian streams: Shredders are not scarce. Freshwater Biology, 50, 748–769. https://doi.org/10.1111/j.1365-2427.2005.01355

    Article  Google Scholar 

  • Cohen, A. S. (1986). Distribution and faunal associations of benthic invertebrates at Lake Turkana, Kenya. Hydrobiologia, 134, 179–197.

    Article  Google Scholar 

  • Coimbra, C. N., Graça, M. A. S., & Cortes, R. M. (1996). The effect of basic effluent on macroinvertebrates community structure in a temporary Mediterranean river. Environ. Pollut., 34:301–307.Crecci, C.V., Moura e Silva, M.S.G., Losekann, M.E., Ishikawa, M.M. (2018) Sistema web para gestão de banco de dados na piscicultura em viveiros escavados. Serie Documentos 115, Jaguariúna, Embrapa Meio Ambiente.

  • Crecci, C.V., Moura e Silva, M.S.G., Losekann, M.E., & Ishikawa, M.M. (2018). Sistema web para gestão de banco de dados na piscicultura em viveiros escavados. Serie Documentos 115, Jaguariúna, Embrapa Meio Ambiente.

  • Egessa, R., Pabire, G. W., & Ocaya, H. (2018). Benthic macroinvertebrate community structure in Napoleon Gulf, Lake Victoria: Effects of cage aquaculture in eutrophic lake. Environmental Monitoring and Assessment, 190, 112. https://doi.org/10.1007/s10661-018-6498-5

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization – FAO. (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. https://doi.org/10.4060/ca9229en

    Book  Google Scholar 

  • Gibbons, W.N., Munn, M.D., & Paine, M.D. (1993). Guidelines for monitoring benthos in freshwater environments. North Vancouver: Environment Canada. 87 p. Report prepared for Environment Canada, North Vancouver, B.C. by EVS Consultants.

  • Guilpart, A., Roussel, J. M., Aubin, J., Caquet, T., Marle, M., & Le Bris, H. (2012). The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers. Ecological Indicators, 23, 356–365.

    Article  CAS  Google Scholar 

  • Henriques de Oliveira, C. (2002). Macroinvertebrados associados à Typha domingensis Pers (Typhaceae) em duas lagoas no litoral norte fluminense e sua utilização em programas de biomonitoramento. Dissertação de Mestrado em Ecologia, PPGE-UFRJ, Rio de Janeiro, RJ, Brasil, 92p. 2002.

  • Imanpour Namin, J., Sharifinia, M., & Bozorgi Makrani, A. (2013). Assessment of fish farm effluents on macroinvertebrates based on biological indices in Tajan River (north Iran). Caspian Journal of Environmental Sciences, 11(1), 29–39.

    Google Scholar 

  • Kochersberger, J. P., Burton, G. A., Jr., & Custe, K. W. (2012). Short-term macroinvertebrate recruitment and sediment accumulation: A novel field chamber approach. Environmental Toxicology and Chemistry, 31(5), 1098–1106.

    Article  CAS  Google Scholar 

  • Kleine, P., & Trivinho-Strixino, S. (2005). Chironomidae and other aquatic macroinvertebrates of a first order stream: Community response after habitat fragmentation. Acta Limnologica Brasiliensia, 17, 81–90.

    Google Scholar 

  • Leite-Rossi, L. A., Rodrigues, G. N., & Trivinho-Strixino, S. (2015). Aquatic macroinvertebrate colonization of artificial substrates in low-order streams. Biotemas, 28, 69–77. https://doi.org/10.1590/S2179-975X3616

    Article  Google Scholar 

  • Marques, M. M. G. S. M., Barbosa, F. A. R., & Callisto, M. (1999). Distribution and abundance of Chironomidae (Diptera) in impacted watershed in south-east Brasil. Revista Brasileira De Biologia, 59, 553–561.

    Article  CAS  Google Scholar 

  • Mason, W. T., Jr., Weber, C. I., Lewis, P. A. E., & Julian, C. (1973). Factors affecting the performance of basket and multiplate macroinvertebrate samplers. Freshwater Biology, 3, 409–436.

    Article  Google Scholar 

  • Matlak, O. (1963). The appearance of invertebrates on aquatic plants in fishponds. Acta Hydrobiologica, 5, 1–30.

    Google Scholar 

  • Montagna, P. A. (2014). Using SAS to manage biological species data and calculate diversity indices. In: South Central SAS Users Group Educational Forum, 2014, Austin, Texas. Proceedings... Dallas: SCSUG, 2014. 5p. Available in: http://www.scsug.org/wp-content/uploads/2015/10/Montagna-Using-SAS-to-Manage-Biological-Species-Data-and-Calculate-Diversity-Indices.pdf. Accessed on 2 April 2020.

  • Moura e Silva, M.S.G., Graciano, T.S., Losekann, M.E. and Luiz, A.J.B. (2016). Assessment of benthic macroinvertebrates at Nile tilapia production using artificial substrate samplers. Brazilian Journal of Biology, 76, 735–742. https://doi.org/10.1590/1519-6984.02815

    Article  Google Scholar 

  • Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de Macroinvertebrados Aquáticos do Estado do Rio de Janeiro (p. 174). Technical Books Editora.

    Google Scholar 

  • Nimer, E. (1989). (1989) Climatologia do Brasil (2nd ed., p. 421p). IBGE.

    Google Scholar 

  • Pechar, L. (2004). Impact of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fisheries Management and Ecology, 7, 23–31. https://doi.org/10.1046/j.1365-2400.2000.00193.x

    Article  Google Scholar 

  • PEIXE BR. (2020). Anuário Brasileiro da Piscicultura PEIXE BR 2020. São Paulo, SP.

  • Phillips, I. D., & Prestie, K. S. (2017). Evidence for substrate influence on artificial substrate invertebrate communities. Environmental Entomology, 46, 926–930. https://doi.org/10.1093/ee/nvx106

    Article  Google Scholar 

  • Queiroz, J. F., Silveira, M. P., Sitton, M., Marigo, A. L. S., Zambon, G. V., Silva, J. R., Carvalho, M. P., & Ribacinko, D. B. (2007). Coletor de macroinvertebrados bentônicos com substrato artificial para monitoramento da qualidade de água em viveiros de produção de tilápia. Circular Técnica 16. Jaguariúna, SP. Embrapa Meio Ambiente, p. 1–5.

  • Raburu, P. O., Masese, F. O., & Tonderski, K. S. (2017). Use of macroinvertebrate assemblages for assessing performance of stabilization ponds treating effluents from sugarcane and molasses processing. Environmental Monitoring and Assessment, 189, 79–94. https://doi.org/10.1007/s10661-017-5786-9

    Article  CAS  Google Scholar 

  • Řezníčková, P., Petrovajová, V., Nerudová, J., Hadašová, L., & Kopp, R. (2016). The colonization of newly built fishponds by the macroinvertebrate assemblages. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 64, 141–149. https://doi.org/10.11118/actaun201664010141

    Article  Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates (p. 488). Chapman and Hall, Inc.

    Google Scholar 

  • Santos, L. B., Bruno, C. G. C., & Santos, J. C. (2016). Colonization by benthic macroinvertebrates in two artificial substrate types of a Riparian Forest. Acta Limnologica Brasiliensia, 28, e24. https://doi.org/10.1590/S2179-975X3616

    Article  Google Scholar 

  • SAS Institute INC. (2011). SAS/STAT® 9.3 user’s guide. Cary, NC: SAS Institute Inc.

  • Serra, S. R., Graça, M. A., Dolédec, S., & Feio, M. J. (2017). Chironomidae traits and life history strategies as indicators of anthropogenic disturbance. Environmental Monitoring and Assessment, 189, 326.

    Article  Google Scholar 

  • Setliková, I., Bláha, M., Edwards-Jonásová, M., Dvorák, J., & Burianová, K. (2016). Diversity of phytophilous macroinvertebrates in polycultures of semi-intensively managed fishponds. Limnologica, 60, 59–67. https://doi.org/10.1016/j.limno.2016.07.001

    Article  Google Scholar 

  • Simone, L. R. L. (2006) Land and freshwater molluscs of Brazil. 1. ed. São Paulo: EGB. v. 1. 390p.

  • Solimini, A. G., Ruggiero, A., Bernardini, V., & Carchini, G. (2003). Temporal pattern of macroinvertebrate diversity and production in a new man-made shallow lake. Hydrobiologia, 506–509, 373–379.

    Article  Google Scholar 

  • Stephens, W. W., & Farris, J. L. (2004). Instream community assessment of aquaculture effluents. Aquaculture, 231, 149–162. https://doi.org/10.1016/j.aquaculture.2004.08.007

    Article  Google Scholar 

  • Trivinho-Strixino, S. & Strixino, G. (1995). Larvas de Chironomidae (Diptera) do Estado de São Paulo. Guia de identificação e diagnose dos gêneros. PPG-ERN, UFSCar, São Carlos. 229 p.

  • Voshell J. R., & Simmons, G. M. Jr. (1984). Colonization and succession of benthic macroinvertebrates in a new reservoir. Hydrobiologia, 112: 27-39.

  • Wiggins, G. B. (2007). Caddisflies: Architects under water. American Entomologist, 53, 78–85.

    Article  Google Scholar 

  • Ziglio G., Siligardi, M., & Flaim, G. (2006). Biological monitoring of rivers. John Wiley and Sons Ltd, West Sussex. 469 p.

Download references

Acknowledgements

The authors are grateful to ASPI (Associação Paulista de Piscicultores) for support at all stages of the project, and to the technical staff of Laboratory of Aquatic Ecosystems of Embrapa Environment.

Funding

This research was funded by Empresa Brasileira de Pesquisa Agropecuária (Embrapa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Silveira Guerra Moura e Silva.

Ethics declarations

Ethics approval

The authors followed all ethical policies of the journal in all methods and actions. All procedures including housing and welfare were carried out in accordance with the recommendations in the Guiding Principles for Biomedical Research Involving Animals of the International Council for Laboratory Animal Science (ICLAS), countersigned by the “National Council for the Control of Animal Experimentation” (CONCEA).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Taxa list and mean abundance of benthic macroinvertebrates at fish farms.

Taxa

Fish farm

A

B

C

D

Ampullaridae

0.000

0.000

0.628

0.011

Baetidae

0.000

0.011

0.011

0.011

Belostomatidae

0.000

0.000

0.000

0.011

Calamoceratidae

0.000

0.000

0.000

0.011

Ceratopogonidae

0.218

0.065

0.032

0.221

Chironomidae

1990,426

607,630

1008,202

861,042

Cladocera

6,030

0.185

0.840

0.021

Coenagrionidae

0.050

0.087

0.053

0.032

Collembola

0.000

0.000

0.021

0.000

Conchostraca

0.000

0.120

1,223

0.000

Copepoda

0.129

0.130

0.011

0.000

Corbiculidae

0.000

0.000

0.415

0.000

Corduliidae

0.089

0.000

0.074

0.011

Corixidae

0.000

0.391

0.000

0.000

Dysticidae

0.000

0.000

0.053

0.021

Elmidae

0.010

0.000

0.000

0.000

Ephemeridae

0.000

0.000

0.032

0.000

Euthyplocyidae

0.000

0.076

0.000

0.000

Gelastocoridae

0.010

0.011

0.000

0.011

Glossiphonidae

8,030

30,652

2,436

248,821

Gomphidae

0.000

0.011

0.021

0.000

Gyrinidae

0.020

0.022

0.053

0.000

Hebridae

0.000

0.000

0.021

0.000

Hidracarina

0.000

0.000

0.021

0.011

Hirudinidae

8,634

10,652

0.851

41,189

Hydrobiosidae

0.000

0.076

0.000

0.000

Hydrophilidae

0.000

0.000

0.000

0.011

Hydropsychidae

0.000

0.076

0.000

0.000

Leptoceridae

0.000

0.011

0.021

0.000

Libellulidae

0.574

0.196

0.340

0.263

Lutrochidae

0.000

0.000

0.011

0.000

Nematoda

0.059

0.011

0.000

8,926

Notonectidae

0.119

0.000

0.000

0.000

Odontoceridae

0.000

0.022

0.000

0.000

Oligochaeta

100,614

64,728

14,840

64,705

Ostracoda

0.000

0.000

0.021

0.000

Perilestidae

0.010

0.043

0.000

0.000

Philopotamidae

0.000

0.022

0.000

0.000

Piscicolidae

0.000

0.000

0.000

0.021

Polycentropodidae

0.010

16,663

0.074

0.032

Polimitarcydae

0.059

0.326

0.149

0.011

Planorbiidae

0.000

0.000

0.096

0.505

Protoneuridae

0.000

0.011

0.000

0.011

Tabanidae

0.010

0.000

0.000

0.000

Tipulidae

0.000

0.000

0.000

0.000

Thiaridae

0.059

0.000

8,532

8,105

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura e Silva, M.S.G., Losekann, M.E., Luiz, A.J.B. et al. Biomonitoring as a potential tool for water quality in tilapia culture: a case study of Baixa Mogiana region of São Paulo State, Brazil. Environ Monit Assess 194, 597 (2022). https://doi.org/10.1007/s10661-022-10257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10257-8

Keywords

Navigation