Skip to main content
Log in

Prediction of Nitrate Distribution Process in the Groundwater via 3D Modeling

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The main purpose of this study was to model nitrate and its spatial and temporal variations under hydrological tensions. For this purpose, the hydrodynamic characteristics and transmission of Varamin plain groundwater were modeled after collecting and organizing the field data. Qualitative data were imported to the quantitative GMS model constructed by using the MODLFLOW code. Then, quantitative and qualitative models were calibrated. Measured and model predicted values were compared and relatively acceptable results were obtained. The most important factor in deteriorating the groundwater quality was nitrate pollution related to the agricultural areas which will exceed the permissible limits of drinking water during a 10-year period. Also, according to the model maps of the unconfined aquifer, the highest content of nitrate was related to downstream areas of the big cities. Since the confined aquifer is overlaid by an impermeable layer, it is less affected by nitrate pollution and contains high-quality drinking water. However, population growth and subsequent increase in agricultural activities and human sewage disposal may lead to further pollution of the unconfined aquifer by nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Karami, S., Madani, H., Katibeh, H., & Fatehi Marj, A. (2017). Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches. Applied Water Science, 8: 23. https://doi.org/10.1007/s13201-018-0641-x.

  2. Szucs, P., Madarasz, T., & Civan, F. (2009). Remediating over-produced and contaminated aquifers by artificial recharge from surface waters. Environmental Modeling and Assessment, 14, 511–520. https://doi.org/10.1007/s10666-008-9156-4.

    Article  Google Scholar 

  3. Noori, R., Dodangeh, M., Berndtsson, R., Hooshyaripor, F., Adamowski, J. F., Javadi, S., & Baghvand, A. (2018). A novel model for simulation of nitrate in aquifers. Hydrol Earth Syst Sci Discuss, https://doi.org/10.5194/hess-2018-222.

  4. Shekhar, S., Pandey, A. C., & Tirkey, A. S. (2015). A GIS based DRASTIC model for assessing groundwater vulnerability in hard rock granitic aquifer. Arabian Journal of Geosciences ISSN: 1866-7511, 8(3), 1385–1401.

    Article  Google Scholar 

  5. Liu, H. F., & Liptak, B. G. (2000). Groundwater and surface water pollution. Boca Ration: Lewis publishers, c2000. ISBN: 1566705118

  6. Faidi, H., Garcia, L., & Albertson, M. (2002). Development of a model for simulation of solute transport in a stream-aquifer system. Environmental Modeling and Assessment, 7, 191–206.

    Article  Google Scholar 

  7. Papadopoulou, M. P., Varouchakis, E. A., & Karatzas, G. P. (2009). Simulation of complex aquifer behavior using numerical and geostatistical methodologies. Desalination, 237(1–3), 42–53.

    Article  CAS  Google Scholar 

  8. Nakhaei, M., Dadgar, M. A., & Amiri, V. (2016). Geochemical processes analysis and evaluation of groundwater quality in Hamadan Province, Western Iran. Arabian Journal of Geosciences, 9, 384.

    Article  Google Scholar 

  9. Shamrukh, M., Corapcioglu, M. Y., & Hassona, F. A. A. (2001). Modeling the effect of chemical fertilizers on groundwater quality in the Nile valley aquifer, Egypt. Groundwater., 39, 59–67. https://doi.org/10.1111/j.1745-6584.2001.tb00351.x.

    Article  CAS  Google Scholar 

  10. Ghoraba, S. M., Zyedan, B. A., & Rashwan, I. M. H. (2013). Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt. Alexandria Engineering Journal, 52, 197–207. https://doi.org/10.1016/j.aej.2012.12.007.

    Article  Google Scholar 

  11. Mol’enat, J., & Gascuel-Odoux, C. (2002). Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use evolution on water quality. Hydrological Processes, 16, 479–492. https://doi.org/10.1002/hyp.328.

    Article  Google Scholar 

  12. Serhal, H., Bernard, D., El Khattabi, J., Sabine, B., & Shahrour, I. (2009). Impact of fertilizer application and urban wastes on the quality of groundwater in the Cambrai Chalk aquifer, Northern France. Environ Geol, 57, 1579. https://doi.org/10.1007/s00254-008-1433-7.

    Article  Google Scholar 

  13. Almasri, M. N., & Kaluarachchi, J. J. (2007). Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of Hydrology, 343, 211–229. https://doi.org/10.1016/j.jhydrol.2007.06.016.

    Article  CAS  Google Scholar 

  14. Jiang, Y., & Somers, G. (2009). Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada. Hydrogeology Journal ISSN: 1431-2174, 17(3), 707–724.

    Article  CAS  Google Scholar 

  15. Zhang, H., & Hiscock, K. M. (2011). Modelling the effect of forest cover in mitigating nitrate contamination of groundwater: a case study of the Sherwood Sandstone aquifer in the East Midlands, UK. Journal of Hydrology, 399, 212–225. https://doi.org/10.1016/j.jhydrol.2010.12.042.

    Article  Google Scholar 

  16. Stamatis, G., Parpodis, K., Filintas, A., & Zagana, E. (2011). Groundwater quality, nitrate pollution and irrigation environmental management in the Neogene sediments of an agricultural region in central Thessaly (Greece). Environment and Earth Science ISSN: 1866-6280, 64(4), 1081–1105.

    Article  CAS  Google Scholar 

  17. Papadopoulou, M. P., Varouchakis, E. A., & Karatzas, G. P. (2010). Terrain discontinuity effects in the regional flow of a complex karstified aquifer. Environmental Modeling and Assessment, 15(5), 319–328.

    Article  Google Scholar 

  18. Marković, T., Brkić, Z., & Larva, O. (2013). Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia. Science of The Total Environment, 458-460, 508–516. https://doi.org/10.1016/j.scitotenv.2013.04.013.

    Article  CAS  Google Scholar 

  19. Jalali, M. (2011). Nitrate pollution of groundwater in Toyserkan, western Iran. Environment and Earth Science. ISSN: 1866–6280, 62(5), 907–913.

    Article  CAS  Google Scholar 

  20. Jalali, M. (2011). Hydrogeochemistry of groundwater and its suitability for drinking and agricultural use in Nahavand, Western Iran. Natural Resources Research. ISSN: 1520–7439, 20(1), 65–73.

    Article  CAS  Google Scholar 

  21. Moosavirad, S. M., Janardhana, M. R., & Khairy, H. (2013). Impact of anthropogenic activities on the chemistry and quality of groundwater: a case study from a terrain near Zarand City, Kerman Province, SE Iran. Environment and Earth Science. ISSN: 1866–6280, 69(7), 2451–2467.

    Article  CAS  Google Scholar 

  22. Ghahremanzadeh, H., Noori, R., Baghvand, A., & Nasrabadi, T. (2017). Evaluating the main sources of groundwater pollution in the southern Tehran aquifer using principal component factor analysis. Environmental Geochemistry and Health, 40, 1317–1328. https://doi.org/10.1007/s10653-017-0058-8.

    Article  CAS  Google Scholar 

  23. Mahmoudi, N., Nakhaei, M., & Porhemmat, J. (2017). Assessment of hydrogeochemistry and contamination of Varamin deep aquifer, Tehran Province, Iran. Environment and Earth Science, 76, 370.

    Article  Google Scholar 

  24. Mokhtari, H. R., & Espahbod, M. R. (2009). The investigation of hydrodynamic parameters potentiality of the Varamin plain regarding the variation of salinity gradient. Journal of the Earth, 4, 27–47.

  25. Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8, 867–883.

    Article  Google Scholar 

  26. TRWA. (2014). Report of groundwater resources studies in Varamin area (in Persian). Tehran regional water authority.

  27. Anderson, M. P., & Woessner, W. M. (1992). Applied groundwater modeling. San Diego: Acadeic Press, Inc.

    Google Scholar 

  28. Spitz, K., & Moreno, J. (1996). A practical guide to groundwater and solute transport modeling. New York: John Wiley & Sons, Inc..

    Google Scholar 

  29. Zheng, C. (2009). Recent developments and future directions for MT3DMS and related transport codes. Groundwater, 47, 620–625. https://doi.org/10.1111/j.1745-6584.2009.00602.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homayoon Katibeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valivand, F., Katibeh, H. Prediction of Nitrate Distribution Process in the Groundwater via 3D Modeling. Environ Model Assess 25, 187–201 (2020). https://doi.org/10.1007/s10666-019-09671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09671-z

Keywords

Navigation