Skip to main content

Advertisement

Log in

Do common dispersal influences inform a large lizard’s landscape-scale gene flow?

  • Original Research
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The dispersal tendencies of individuals can provide an important adaptive basis to counter environmental and ecological variation to increase fitness and benefit populations. We evaluated whether indirect genetic-based measures of dispersal of a large monitor lizard (Varanus varius) were sex-biased and further covaried with putative demographic and ecological differences across a forest ecotone in Southern Australia. The mean corrected assignment index (i.e., mAIC) estimated that lace monitors had significant male-biased dispersal. There was strong evidence that common dispersal promoting influences, including lace monitor density and arboreal mammal prey availability, but not the overall male-biased sex ratio, differed with forest type across the ecotone. These different forest types influenced the extent of sex-biased dispersal, with lace monitors captured in banksia woodland having a significant male bias in dispersal, whilst lace monitors sampled in adjacent eucalypt forest showed no difference in assignment values indicating no sex-biased dispersal. However, individual-based spatial autocorrelation analyses and mixed effect models indicated no spatial mediated genetic structuring nor evidence of sex or habitat-related effects. Estimates of recent migration (i.e., < 3 generations) indicated strong and symmetrical migration between banksia woodland and eucalypt forest patches suggesting limited habitat resistance to gene flow across an ecotonal landscape. Not discounting method-specific evidence for male- and forest-type-biased dispersal, the absence of spatial genetic structuring suggests lace monitors retain a high dispersal capacity. An absence of landscape-scale genetic structure is consistent with this species’s high vagility. This landscape-scale result is further supported because only the most significant biogeographic barriers (e.g., mountain ranges) impede gene flow within the species’ extensive range distribution, allowing for genetic structuring among populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Will be provided on request to the lead author.

Code availability

Not applicable.

References

  • Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G, Chen N (2017) Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet 13:e1006911

    Article  PubMed  PubMed Central  Google Scholar 

  • Anson JR, Dickman CR, Boonstra R, Jessop TS (2013) Stress triangle: do introduced predators exert indirect costs on native predators and prey? PLoS ONE 8:e60916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anson JR, Dickman CR, Handasyde K, Jessop TS (2014) Effects of multiple disturbance processes on arboreal vertebrates in eastern Australia: implications for management. Ecography 37:357–366

    Article  Google Scholar 

  • Baguette M (2003) Long distance dispersal and landscape occupancy in a metapopulation of the cranberry fritillary butterfly. Ecography 26:153–160

    Article  Google Scholar 

  • Banks SC, Peakall R (2012) Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol Ecol 21:2092–2105

    Article  PubMed  Google Scholar 

  • Barton, K., and M. K. Barton. 2019. Package ‘MuMIn’. R package version 1.

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1). https://doi.org/10.18637/jss.v067.i01

  • Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13:551–561

    Article  PubMed  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q R Biol 74:21–45

    Article  CAS  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M (2012) Costs of dispersal. Biol Rev 87:290–312

    Article  PubMed  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol Rev Camb Philos Soc 80:205–225

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, London

    Google Scholar 

  • Cayuela H, Rougemont Q, Prunier JG, Moore JS, Clobert J, Besnard A, Bernatchez L (2018) Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review. Mol Ecol 27:3976–4010

    Article  PubMed  Google Scholar 

  • Ciofi C, Tzika AC, Natali C, Watts PC, Sulandari S, Zein MS, Milinkovitch MC (2011) Development of a multiplex PCR assay for fine-scale population genetic analysis of the Komodo monitor Varanus komodoensis based on 18 polymorphic microsatellite loci. Mol Ecol Resour 11:550–556

    Article  CAS  PubMed  Google Scholar 

  • Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372

    Article  Google Scholar 

  • Clobert J (2012) Dispersal ecology and evolution. Oxford University Press, New Jersey

    Book  Google Scholar 

  • Clobert J, Galliard L, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209

    Article  PubMed  Google Scholar 

  • Clobert J, Ims RA, Rousset F (2004) Causes, mechanisms and consequences of dispersal. Ecology, genetics and evolution of metapopulations. Elsevier, Netherlands, pp 307–335

    Chapter  Google Scholar 

  • Cure K, Thomas L, Hobbs J-PA, Fairclough DV, Kennington WJ (2017) Genomic signatures of local adaptation reveal source-sink dynamics in a high gene flow fish species. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Dobson FS (1982) Competition for mates and predominant juvenile male dispersal in mammals. Anim Behav 30:1183–1192

    Article  Google Scholar 

  • Dubey S, Brown G, Madsen T, Shine R (2008) Male-biased dispersal in a tropical Australian snake (Stegonotus cucullatus, Colubridae). Mol Ecol 17:3506–3514

    Article  CAS  PubMed  Google Scholar 

  • Edelaar P, Jovani R, Gomez-Mestre I (2017) Should I change or should I go? Phenotypic plasticity and matching habitat choice in the adaptation to environmental heterogeneity. Am Nat 190:506–520

    Article  PubMed  Google Scholar 

  • Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16(6):1149–1166

  • Favre L, Balloux F, Goudet J, Perrin N (1997) Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc Royal Soc London Ser B: Biolog Sci 264:127–132

    Article  CAS  Google Scholar 

  • Fitch AJ, Goodman AE, Donnellan SC (2005) Isolation and characterisation of microsatellite markers for the Australian monitor lizard, Varanus acanthurus (Squamata: Varanidae) and their utility in other selected varanid species. Mol Ecol Notes 5:521–523

    Article  CAS  Google Scholar 

  • François D, Ursenbacher S, Boissinot A (2021) Isolation-by-distance and male-biased dispersal at a fine spatial scale: a study of the common European adder (Vipera berus) in a rural landscape. Conserv Genet 22:823–837. https://doi.org/10.1007/s10592-021-01365-y

  • Fraser DJ, Lippé C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol Ecol 13:67–80

    Article  CAS  PubMed  Google Scholar 

  • Gadgil M (1971) Dispersal: population consequences and evolution. Ecology 52:253–261

    Article  Google Scholar 

  • Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443

    Article  Google Scholar 

  • Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9. 3.http://www2.unil.ch/popgen/softwares/fstat.htm

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Guarino F (2001) Diet of a large carnivorous lizard, Varanus varius. Wildl Res 28:627–630

    Article  Google Scholar 

  • Guarino F (2002) Spatial ecology of a large carnivorous lizard, Varanus varius (Squamata: Varanidae). J Zool 258:449–457

    Article  Google Scholar 

  • Halverson J, L Spelman (2002) Sex determination and its role in management. In: Komodo dragons: Biology and Conservation. Smithsonian Institution Pr: Washington p:165–177

  • Hanski I (1999) Metapopulation ecology Oxford University Press, Oxford Google Scholar. Oxford University Press, New Jersey

    Google Scholar 

  • Hendry AP, Castric V, Kinnison MT, Quinn TP, Hendry A, Stearns S (2004) The evolution of philopatry and dispersal. Evolution illuminated: salmon and their relatives. Elsiver, Nedharlond, pp 52–91

    Google Scholar 

  • Hines, J. E. 2006. Program PRESENCE. See http://www.mbrpwrc.usgs.gov/software/doc/presence/presence.html

  • Iannucci A, Altmanová M, Ciofi C, Ferguson-Smith M, Milan M, Pereira JC, Pether J, Rehák I, Rovatsos M, Stanyon R (2019) Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity 123:215–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessop TS, Urlus J, Lockwood T, Gillespie G (2010) Preying possum: assessment of the diet of lace monitors (Varanus varius) from coastal forests in southeastern Victoria. Biawak 4:59–66

    Google Scholar 

  • Jessop TS, Smissen P, Scheelings F, Dempster T (2012) Demographic and phenotypic effects of human mediated trophic subsidy on a large Australian lizard (Varanus varius): meal ticket or last supper? PLoS ONE 7:e34069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessop TS, Kearney MR, Moore JL, Lockwood T, Johnston M (2013) Evaluating and predicting risk to a large reptile (Varanus varius) from feral cat baiting protocols. Biol Invasions 15:1653–1663

    Article  Google Scholar 

  • Jessop TS, Anson JR, Narayan E, Lockwood T (2015) An introduced competitor elevates corticosterone responses of a native lizard (Varanus varius). Physiol Biochem Zool 88:237–245

    Article  PubMed  Google Scholar 

  • Jessop TS, Ariefiandy A, Purwandana D, Ciofi C, Imansyah J, Benu YJ, Fordham DA, Forsyth DM, Mulder RA, Phillips BL (2018) Exploring mechanisms and origins of reduced dispersal in island Komodo dragons. Proc R Soc B 285:20181829

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessop, T. S., G. Gillespie, and M. Letnic. 2016. Examining multi-scale effects of the invasive fox on a large varanid (Varanus varius White, 1790) mesopredator. Pages 221–236 in Interdisciplinary World Conference on Monitor Lizards’.(Ed. M. Cota.) .

  • Kark S (2013) Ecotones and ecological gradients. Ecological systems. Springer, New York, pp 147–160

    Chapter  Google Scholar 

  • Keogh JS, Webb JK, Shine R (2006) Spatial genetic analysis and long-term mark–recapture data demonstrate male-biased dispersal in a snake. Biol Let 3:33–35

    Article  Google Scholar 

  • Lane A, Shine R (2011) Intraspecific variation in the direction and degree of sex-biased dispersal among sea-snake populations. Mol Ecol 20:1870–1876

    Article  PubMed  Google Scholar 

  • Lowe WH, Addis BR (2019) Matching habitat choice and plasticity contribute to phenotype–environment covariation in a stream salamander. Ecology 100:e02661

    Article  PubMed  Google Scholar 

  • Lukoschek V, Waycott M, Keogh JS (2008) Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis. Mol Ecol 17:3062–3077

    Article  CAS  PubMed  Google Scholar 

  • Massot M, Clobert J, Ferriere R (2008) Climate warming, dispersal inhibition and extinction risk. Glob Change Biol 14:461–469

    Article  Google Scholar 

  • McCurry MR, Mahony M, Clausen PD, Quayle MR, Walmsley CW, Jessop TS, Wroe S, Richards H, McHenry CR (2015) The relationship between cranial structure, biomechanical performance and ecological diversity in varanoid lizards. PLoS ONE 10:e0130625

    Article  PubMed  PubMed Central  Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027

    Article  Google Scholar 

  • Meirmans PG (2014) Nonconvergence in Bayesian estimation of migration rates. Mol Ecol Res 14(4):726–733

    Article  Google Scholar 

  • Mossman C, Waser P (1999) Genetic detection of sex-biased dispersal. Mol Ecol 8:1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Olsson M, Shine R (2003) Female-biased natal and breeding dispersal in an alpine lizard, Niveoscincus microlepidotus. Biol J Lin Soc 79:277–283

    Article  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prugnolle F, De Meeˆus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    Article  CAS  PubMed  Google Scholar 

  • Pusey AE (1987) Sex-biased dispersal and inbreeding avoidance in birds and mammals. Trends Ecol Evol 2:295–299

    Article  CAS  PubMed  Google Scholar 

  • Raufaste N, Bonhomme F (2000) Properties of bias and variance of two multiallelic estimators of FST. Theor Popul Biol 57:285–296

    Article  CAS  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Article  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Royle JA, Nichols JD (2003) Estimating abundance from repeated presence–absence data or point counts. Ecology 84:777–790

    Article  Google Scholar 

  • Ryberg K, Olsson M, Wapstra E, Madsen T, Anderholm S, Ujvari B (2004) Offspring-driven local dispersal in female sand lizards (Lacerta agilis). J Evol Biol 17:1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Scheelings T, Jessop T (2011) Influence of capture method, habitat quality and individual traits on blood parameters of free-ranging lace monitors (Varanus varius). Aust Vet J 89:360–365

    Article  PubMed  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Smissen PJ, Melville J, Sumner J, Jessop TS (2013) Mountain barriers and river conduits: phylogeographical structure in a large, mobile lizard (Varanidae: Varanus varius) from eastern Australia. J Biogeogr 40:1729–1740

    Article  Google Scholar 

  • Smith GT, Arnold GW, Sarre S, AbenspergTraun M, Steven DE (1996) The effects of habitat fragmentation and livestock-grazing on animal communities in remnants of gimlet Eucalyptus salubris woodland in the Western Australian wheatbelt.2. Lizards J Appl Ecol 33:1302–1310

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Stevens VM, Whitmee S, Le Galliard JF, Clobert J, Böhning-Gaese K, Bonte D, Brändle M, Matthias Dehling D, Hof C, Trochet A (2014) A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol Lett 17:1039–1052

    Article  PubMed  Google Scholar 

  • Trochet A, Courtois EA, Stevens VM, Baguette M, Chaine A, Schmeller DS, Clobert J, Wiens JJ (2016) Evolution of sex-biased dispersal. Q Rev Biol 91:297–320

    Article  PubMed  Google Scholar 

  • Tucker A, McCallum H, Limpus C, McDonald K (1998) Sex-biased dispersal in a long-lived polygynous reptile (Crocodylus johnstoni). Behav Ecol Sociobiol 44:85–90

    Article  Google Scholar 

  • Tucker JM, Allendorf FW, Truex RL, Schwartz MK (2017) Sex-biased dispersal and spatial heterogeneity affect landscape resistance to gene flow in fisher. Ecosphere 8:e01839

    Article  Google Scholar 

  • Ujvari B, Dowton M, Madsen T (2008) Population genetic structure, gene flow and sex-biased dispersal in frillneck lizards (Chlamydosaurus kingii). Mol Ecol 17:3557–3564

    CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wang W, Li J, Wang H, Ran Y, Wu H (2020) Genetic evidence reveals male-biased dispersal of the Omei tree frog. J Zool 310:201–209

    Article  Google Scholar 

  • Weavers BW (1993) Home range of male lace monitors, Varanus varius (Reptilia: Varanidae), in south-eastern Australia. Wildl Res 20:303–313

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of several volunteers, especially Tim Lockwood, for their help with fieldwork.

Funding

Zoos Victoria provided research funding for the “forest for life” project.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, resources and funding acquisition: TSJ, JMS; Methodology: TSJ, PS, JA, CS; Data collection: TSJ, PS, JA; Analysis and the original draft: TSJ, PS, CS, JSM; Review and editing: TSJ, JSM.

Corresponding author

Correspondence to Tim S. Jessop.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

The research was carried out under research permits 10005634 from the Department of Sustainability and Environment, Victoria, and Animal Experimental Ethics Committee approval 0911328.2 (University of Melbourne).

Consent to participate

All authors agree to participate in the study.

Consent for publication

All authors consent to the publication of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 413 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jessop, T.S., Smissen, P., Anson, J.R. et al. Do common dispersal influences inform a large lizard’s landscape-scale gene flow?. Evol Ecol 36, 987–1006 (2022). https://doi.org/10.1007/s10682-022-10208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-022-10208-2

Keywords

Navigation