Skip to main content
Log in

Future perspectives in solar hot plasma observations in the soft X-rays

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The soft X-rays (SXRs: 90–150 Å) are among the most interesting spectral ranges to be investigated in the next generation of solar missions due to their unique capability of diagnosing phenomena involving hot plasma with temperatures up to 15 MK. Multilayer (ML) coatings are crucial for developing SXR instrumentation, as so far they represent the only viable option for the development of high-efficiency mirrors in the this spectral range. However, the current standard MLs are characterized by a very narrow spectral band which is incompatible with the science requirements expected for a SXR spectrometer. Nevertheless, recent advancement in the ML technology has made the development of non-periodic stacks repeatable and reliable, enabling the manufacturing of SXR mirrors with a valuable efficiency over a large range of wavelengths. In this work, after reviewing the state-of-the-art ML coatings for the SXR range, we investigate the possibility of using M-fold and aperiodic stacks for the development of multiband SXR spectrometers. After selecting a possible choice of key spectral lines, some trade-off studies for an eight-bands spectrometer are also presented and discussed, giving an evaluation of their feasibility and potential performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Del Zanna, G., Mason, H.E.: Xuv spectroscopy. Living Rev. Solar Phys. 15 (2018)

  2. Del Zanna, G.: Flare lines in Hinode EIS spectra. Astron. Astrophys. 481, L69–L72 (2008). ADS. [delzanna:08_bflare]

    Article  ADS  Google Scholar 

  3. Parenti, S., Del Zanna, G., Petralia, A., Reale, F., Teriaca, L., Testa, P., Mason, H.E.: Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties. Astrophys. J. 846, 25 (2017). ADS. [parenti_etal:2017]

    Article  ADS  Google Scholar 

  4. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezoijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733–2779 (2014). ADS. [DePontieu14]

    Article  ADS  Google Scholar 

  5. Polito, V., Reeves, K.K., Del Zanna, G., Golub, L., Mason, H.E.: Joint High Temperature Observation of a Small C6.5 Solar Flare With Iris/Eis/Aia. Astrophys. J. 803, 84 (2015). ADS. [polito_etal:2015]

    Article  ADS  Google Scholar 

  6. Shimizu, T., Imada, S., Kawate, T., Ichimoto, K., Suematsu, Y., Hara, H., Katsukawa, Y., Kubo, M., Toriumi, S., Watanabe, T., Yokoyama, T., Korendyke, C.M., Warren, H.P., Tarbell, T., De Pontieu, B., Teriaca, L., Schühle, U.H., Solanki, S., Harra, L.K., Matthews, S., Fludra, A., Auchère, F., Andretta, V., Naletto, G., Zhukov, A.: The Solar-C_EUVST mission. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11118, pp. 1111807 (September 2019)

  7. Teriaca, L., Andretta, V., Auchère, F., Brown, C.M., Buchlin, E., Cauzzi, G., Culhane, J.L., Curdt, W., Davila, J.M., Del Zanna, G., Doschek, G.A., Fineschi, S., Fludra, A., Gallagher, P.T., Green, L., Harra, L.K., Imada, S., Innes, D., Kliem, B., Korendyke, C., Mariska, J.T., Martínez-Pillet, V., Parenti, S., Patsourakos, S., Peter, H., Poletto, L., Rutten, R.J., Schühle, U., Siemer, M., Shimizu, T., Socas-Navarro, H., Solanki, S.K., Spadaro, D., Trujillo-Bueno, J., Tsuneta, S., Dominguez, S.V., Vial, J.-C., Walsh, R., Warren, H.P., Wiegelmann, T., Winter, B., Young, P.: LEMUR: Large European module for solar Ultraviolet Research. European contribution to JAXA’s Solar-C mission. Exp. Astron. 34, 273–309 (2012). ADS. [teriaca_etal:2012_lemur]

    Article  ADS  Google Scholar 

  8. De Pontieu, B., Martínez-Sykora, J., Testa, P., Winebarger, A.R., Daw, A., Hansteen, V., Cheung, M.C.M., Antolin, P.: The Multi-slit Approach to Coronal Spectroscopy with the Multi-slit Solar Explorer (MUSE). Astrophys. J. 888(1), 3 (2020). [depontieu_etal:2020]

    Article  ADS  Google Scholar 

  9. Winebarger, A.R., De Pontieu, B., Cheung, C.M.M., Martinez-Sykora, J., Hansteen, V.H., Testa, P., Golub, L., Savage, S.L., Samra, J., Reeves, K.: Unfolding Overlappogram Data: Preparing for the COOL-AID instrument on Hi-C FLARE. In: AGU Fall Meeting Abstracts 2019, pp. SH33A–06 (2019)

  10. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol: The euv imaging spectrometer for hinode. Sol. Phys. 243(1), 19–61 (2007). https://doi.org/10.1007/s01007-007-0293-1. [Culhane:2007]

    Article  ADS  Google Scholar 

  11. Corso, A.J., Pelizzo, M.G.: Extreme ultraviolet multilayer nanostructures and their application to solar plasma observations: A review. J. Nanosci. Nanotechnol. 19(1), 532–545 (2019). https://www.ingentaconnect.com/content/asp/jnn/2019/00000019/00000001/art00071. [Corso:2019]

    Article  Google Scholar 

  12. Podgorski, W.A., Caldwell, D., McCracken, K., Ordway, M.P., Cheimets, P.N., Korreck, K., Golub, L., Cirtain, J., Kobayashi, K.: Minimizing the mirror distortion for subarcsecond imaging in the Hi-C EUV telescope. In: Advances in X-Ray/EUV Optics and Components VII, Proc. SPIE, vol. 8502, pp. 85020E (2012)

  13. Kobayashi, K., Cirtain, J., Winebarger, A.R., Korreck, K., Golub, L., Walsh, R.W., De Pontieu, B., DeForest, C., Title, A., Kuzin, S., Savage, S., Beabout, D., Beabout, B., Podgorski, W., Caldwell, D., McCracken, K., Ordway, M., Bergner, H., Gates, R., McKillop, S., Cheimets, P., Platt, S., Mitchell, N., Windt, D.: The High-Resolution Coronal Imager (Hi-C). Solar Phys. 289, 4393–4412 (2014). [kobayashi_etal:2014]

    Article  ADS  Google Scholar 

  14. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: The atmospheric imaging assembly (aia) on the solar dynamics observatory (sdo). Sol. Phys. 275 (1), 17–40 (2012). https://doi.org/10.1007/s11207-011-9776-8. [Lemen:2012]

    Article  ADS  Google Scholar 

  15. Soufli, R., Windt, D.L., Robinson, J.C., Baker, S.L., Spiller, E., Dollar, F.J., Aquila, A.L., Gullikson, E.M., Kjornrattanawanich, B., Seely, J.F., Golub, L.: Development and testing of EUV multilayer coatings for the atmospheric imaging assembly instrument aboard the Solar Dynamics Observatory. In: Fineschi, S., Viereck, R.A. (eds.) Solar Physics and Space Weather Instrumentation, Solar Physics and Space Weather Instrumentation, Proc. SPIE, vol. 5901, pp 173–183 (2005)

  16. Boerner, P.F., Testa, P., Warren, H., Weber, M.A., Schrijver, C.J.: Photometric and Thermal Cross-calibration of Solar EUV Instruments. Solar Phys. 289(6), 2377–2397 (2014). [Boerner:2014]

    Article  ADS  Google Scholar 

  17. database, C.: The center for x-ray optics - x-ray database, http://henke.lbl.gov/optical_constants/. Accessed: August 2019. [CXRO:web]

  18. Névot, L., Croce, P.: Caractérisation des surfaces par réflexion rasante de rayons x. application à l’étude du polissage de quelques verres silicates. Rev. Phys. Appl. (Paris) 15(3), 761–779 (1980). https://doi.org/10.1051/rphysap:01980001503076100. [Nevot:1980]

    Article  Google Scholar 

  19. Corso, A.J., Zuppella, P., Principi, E., Giangrisostomi, E., Bencivenga, F., Gessini, A., Zuccon, S., Masciovecchio, C., Giglia, A., Nannarone, S., Pelizzo, M.G.: Broadband multilayer optics for ultrafast EUV absorption spectroscopy with free electron laser radiation. J. Opt. 17(2), 025505 (2015). https://doi.org/10.1088/2040-8978/17/2/025505. [Corso:2015]

    Article  ADS  Google Scholar 

  20. Svechnikov, M.V., Chkhalo, N.I., Gusev, S.A., Nechay, A.N., Pariev, D.E., Pestov, A.E., Polkovnikov, V.N., Tatarskiy, D.A., Salashchenko, N.N., Schäfers, F., Sertsu, M.G., Sokolov, A., Vainer, Y.A., Zorina, M.V.: Influence of barrier interlayers on the performance of mo/be multilayer mirrors for next-generation euv lithography. Opt. Express 26(26), 33718–33731 (2018). http://www.opticsexpress.org/abstract.cfm?URI=oe-26-26-33718. [Svechnikov:2018]

    Article  ADS  Google Scholar 

  21. Bajt, S., Behymer, R.D., Mirkarimi, P.B., Montcalm, C., Wall, M.A., Wedowski, M., Folta, J.A.: Experimental investigation of beryllium-based multilayer coatings for extreme ultraviolet lithography. In: MacDonald, C.A., Goldberg, K.A., Maldonado, J.R., Chen-Mayer, H.H., Vernon, S.P. (eds.) EUV, X-Ray, and Neutron Optics and Sources, Proc. SPIE, vol. 3767 (1999)

  22. Windt, D.L., Gullikson, E.M.: Pd/b4c/y multilayer coatings for extreme ultraviolet applications near 10 nm wavelength. Appl. Opt. 54(18), 5850–5860 (2015). https://doi.org/10.1364/AO.54.005850. [Windt:2015]

    Article  ADS  Google Scholar 

  23. Corso, A.J., Zuppella, P., Nicolosi, P., Windt, D.L., Gullikson, E., Pelizzo, M.G.: Capped mo/si multilayers with improved performance at 30.4 nm for future solar missions. Opt. Express 19(15), 13963–13973 (2011). http://www.opticsexpress.org/abstract.cfm?URI=oe-19-15-13963. [Corso:2011]

    Article  ADS  Google Scholar 

  24. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., Van Dessel, E.L.: Eit: Extreme-ultraviolet imaging telescope for the soho mission. Sol. Phys. 162(1), 291–312 (1995). https://doi.org/10.1007/BF00733432. [Delaboudiniere:1995]

    Article  ADS  Google Scholar 

  25. Bajt, S.: Molybdenum-ruthenium/beryllium multilayer coatings. J. Vacuum Sci. Technol. 18(2), 557–559 (2000). https://doi.org/10.1116/1.582224. [Bajt:2000]

    Article  ADS  Google Scholar 

  26. Montcalm, C., Kearney, P.A., Slaughter, J.M., Sullivan, B.T., Chaker, M., Pépin, H., Falco, C.M.: Survey of ti-, b-, and y-based soft x-ray–extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region. Appl. Opt. 35(25), 5134–5147 (1996). http://ao.osa.org/abstract.cfm?URI=ao-35-25-5134. [Montcalm:1996]

    Article  ADS  Google Scholar 

  27. Windt, D.L., Donguy, S., Seely, J.F., Kjornrattanawanich, B., Gullikson, E.M., Walton, C.C., Golub, L., DeLuca, E.: Euv multilayers for solar physics. In: Citterio, O., O’Dell, S.L. (eds.) Optics for EUV, X-Ray, and Gamma-Ray Astronomy, Proc. SPIE. https://doi.org/10.1117/12.506175. [Windt:2004], vol. 5168 (2004)

  28. Kjornrattanawanich, B., Bajt, S.: Structural characterization and lifetime stability of mo/y extreme-ultraviolet multilayer mirrors. Appl. Opt. 43(32), 5955–5962 (2004). http://ao.osa.org/abstract.cfm?URI=ao-43-32-5955. [Kjornrattanawanich:2004]

    Article  ADS  Google Scholar 

  29. Xu, D., Huang, Q., Wen, M., Wang, Z.: Structure, thermal stability and extreme ultraviolet performance of mo/y multilayers. Thin Solid Films 592, 266–270 (2015). http://www.sciencedirect.com/science/article/pii/S0040609015005775. [Xu:2015_ThinSolidFilms]

    Article  ADS  Google Scholar 

  30. Sae-Lao, B., Bajt, S., Montcalm, C., Seely, J.F.: Performance of normal-incidence molybdenum-yttrium multilayer-coated diffraction grating at a wavelength of 9 nm. Appl. Opt. 41(13), 2394–2400 (2002). http://ao.osa.org/abstract.cfm?URI=ao-41-13-2394. [Sae-Lao:2002]

    Article  ADS  Google Scholar 

  31. Montcalm, C., Sullivan, B.T., Duguay, S., Ranger, M., Steffens, W., Pépin, H., Chaker, M.: In situ reflectance measurements of soft-x-ray/extreme-ultraviolet mo/y multilayer mirrors. Opt. Lett. 20 (12), 1450–1452 (1995). http://ol.osa.org/abstract.cfm?URI=ol-20-12-1450. [Montcalm:1995]

    Article  ADS  Google Scholar 

  32. Martínez-Galarce, D.S., Soufli, R., Windt, D.L., Bruner, M.E., Gullikson, E.M., Khatri, S., Spiller, E.A., Robinson, J.C., Baker, S.L., Prast, E.: Multisegmented, multilayer-coated mirrors for the solar ultraviolet imager. Opt. Eng. 52(9), 1–16–16 (2013). https://doi.org/10.1117/1.OE.52.9.095102. [Martinez-Galarce:2013]

    Article  Google Scholar 

  33. Xu, D., Huang, Q., Wang, Y., Li, P., Wen, M., Jonnard, P., Giglia, A., Kozhevnikov, I.V., Wang, K., Zhang, Z., Wang, Z.: Enhancement of soft x-ray reflectivity and interface stability in nitridated pd/y multilayer mirrors. Opt. Express 23(26), 33018–33026 (2015). http://www.opticsexpress.org/abstract.cfm?URI=oe-23-26-33018. [Xu:2015_OE]

    Article  ADS  Google Scholar 

  34. Morlens, A.-S., López-Martens, R., Boyko, O., Zeitoun, P., Balcou, P., Varjú, K., Gustafsson, E., Remetter, T., L’Huillier, A., Kazamias, S., Gautier, J., Delmotte, F., Ravet, M.-F.: Design and characterization of extreme-ultraviolet broadband mirrors for attosecond science. Opt. Lett. 31(10), 1558–1560 (2006). http://ol.osa.org/abstract.cfm?URI=ol-31-10-1558. [Morlens:2006]

    Article  ADS  Google Scholar 

  35. Gautier, J., Delmotte, F., Ravet, M.F., Jérome, A., Bridou, F., Varnière, F., Auchére, F.: Two channel multilayer mirrors for astrophysics. Opt. Commun. 281(11), 3032–3035 (2008). http://www.sciencedirect.com/science/article/pii/S0030401808001181. [Gautier:2008]

    Article  ADS  Google Scholar 

  36. Hecquet, C., Delmotte, F., Ravet-Krill, M.-F., de Rossi, S., Jérome, A., Bridou, F., Varnière, F., Meltchakov, E., Auchère, F., Giglia, A., Mahne, N., Nanaronne, S.: Design and performance of two-channel euv multilayer mirrors with enhanced spectral selectivity. Appl. Phys. A 95(2), 401 (2009). https://doi.org/10.1007/s00339-009-5082-9. [Hecquet:2009]

    Article  ADS  Google Scholar 

  37. Halain, J.-P., Rochus, P., Appourchaux, T., Berghmans, D., Harra, L., Schühle, U., Auchère, F., Zhukov, A., Renotte, E., Defise, J.-M., Rossi, L., Fleury-Frenette, K., Jacques, L., Hochedez, J.-F., Moussa, A.B.: The technical challenges of the solar-orbiter eui instrument. In: Arnaud, M., Murray, S.S., Takahashi, T. (eds.) Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, Proc. SPIE. [Halain:2010], vol. 7732 (2010)

  38. Rochus, P., Auchere, F., Berghmans, D., et al.: The solar orbiter eui instrument: The extreme ultraviolet imager. Astronomy & Astrophysics. [Rochus2020] (2020)

  39. Louis, E., Yakshin, A.E., Tsarfati, T., Bijkerk, F.: Nanometer interface and materials control for multilayer euv-optical applications. Prog. Surf. Sci. 86(11), 255–294 (2011). http://www.sciencedirect.com/science/article/pii/S0079681611000323. [Louis:2011]

    Article  ADS  Google Scholar 

  40. Yao, Y., Kunieda, H., Matsumoto, H., Tamura, K., Miyata, Y.: Design and fabrication of a supermirror with smooth and broad response for hard x-ray telescopes. Appl. Opt. 52(27), 6824–6833 (2013). http://ao.osa.org/abstract.cfm?URI=ao-52-27-6824. [Yao:2013]

    Article  ADS  Google Scholar 

  41. Pardini, T., Alameda, J., Platonov, Y., Robinson, J., Soufli, R., Spiller, E, Walton, C., Hau-Riege, S.P.: Aperiodic mo/si multilayers for hard x-rays. Opt. Express 24(16), 18642–18648 (2016). http://www.opticsexpress.org/abstract.cfm?URI=oe-24-16-18642. [Pardini:2016]

    Article  ADS  Google Scholar 

  42. Feigl, T., Yulin, S., Benoit, N., Kaiser, N.: Euv multilayer optics. Microelectron. Eng. 83(4), 703–706 (2006). http://www.sciencedirect.com/science/article/pii/S0167931705005976. [Feigl:2006]

    Article  Google Scholar 

  43. Wonisch, A., Neuhäusler, U., Kabachnik, N.M., Uphues, T., Uiberacker, M., Yakovlev, V., Krausz, F., Drescher, M., Kleineberg, U., Heinzmann, U.: Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses. Appl. Opt. 45(17), 4147–4156 (2006). http://ao.osa.org/abstract.cfm?URI=ao-45-17-4147. [Wonisch:2006]

    Article  ADS  Google Scholar 

  44. Lee, P.: Uniform and graded multilayers as x-ray optical elements. Appl. Opt. 22(8), 1241–1246 (1983). http://ao.osa.org/abstract.cfm?URI=ao-22-8-1241. [Lee:1983]

    Article  ADS  Google Scholar 

  45. Suman, M., Frassetto, F., Nicolosi, P., Pelizzo, M.-G.: Design of aperiodic multilayer structures for attosecond pulses in the extreme ultraviolet. Appl. Opt. 46(33), 8159–8169 (2007). http://ao.osa.org/abstract.cfm?URI=ao-46-33-8159. [Suman:2007]

    Article  ADS  Google Scholar 

  46. Mezei, F.: Very high reflectivity supermirrors and their applications. In: Thin Film Neutron Optical Devices: Mirrors, Supermirrors, Multilayer Monochromators, Polarizers, and Beam Guides. [Mezei:1989], vol. 983, pp 10–17. International Society for Optics and Photonics (1989)

  47. Kozhevnikov, I.V., Bukreeva, I.N., Ziegler, E.: Design of x-ray supermirrors. Nucl. Instrum. Methods Phys. Res., Sect. A 460 (2), 424–443 (2001). http://www.sciencedirect.com/science/article/pii/S0168900200010792. [Montcalm:1995]

    Article  ADS  Google Scholar 

  48. Aquila, A.L., Salmassi, F., Dollar, F., Liu, Y., Gullikson, E.M.: Developments in realistic design for aperiodic mo/si multilayer mirrors. Opt. Express 14(21), 10073–10078 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-21-10073. [Aquila:2006]

    Article  ADS  Google Scholar 

  49. Gullikson, E.M., Anderson, C.N., Kim, S.-S., Lee, D., Miyakawa, R., Salmassi, F., Naulleau, P.P.: Molybdenum/silicon multilayer components for high harmonic generation sources. Appl. Opt. 54(13), 4280–4284 (2015). http://ao.osa.org/abstract.cfm?URI=ao-54-13-4280. [Gullikson:2015]

    Article  ADS  Google Scholar 

  50. Binda, P.D., Zocchi, F.E.: Genetic algorithm optimization of x-ray multilayer coatings. In: del Rio, M.S. (ed.) Advances in Computational Methods for X-Ray and Neutron Optics, Proc. SPIE. [Bajt:1999SPIE], vol. 5536 (2004)

  51. Pelizzo, M.G., Suman, M., Monaco, G., Windt, D.L., Nicolosi, P.: Innovative methods for optimization and characterization of multilayer coatings. In: Hudec, R., Pina, L. (eds.) EUV and X-Ray Optics: Synergy between Laboratory and Space, Proc. SPIE. https://doi.org/10.1117/12.820793. [Pelizzo:2009], vol. 7360, pp 231–242. International Society for Optics and Photonics (2009)

  52. Jiang, H., Michette, A.G.: Robust design of broadband euv multilayer beam splitters based on particle swarm optimization. Nucl. Instrum. Methods Phys. Res., Sect. A 703, 22–25 (2013). http://www.sciencedirect.com/science/article/pii/S0168900212013757. [Hecquet:2009]

    Article  ADS  Google Scholar 

  53. Kozhevnikov, I.V., Yakshin, A.E., Bijkerk, F.: Wideband multilayer mirrors with minimal layer thicknesses variation. Opt. Express 23(7), 9276–9283 (2015). http://www.opticsexpress.org/abstract.cfm?URI=oe-23-7-9276. [Kozhevnikov:2015]

    Article  ADS  Google Scholar 

  54. qi Kuang, S., peng Gong, X., gui Yang, H.: Robust design of broadband euv multilayer using multi-objective evolutionary algorithm. Opt. Commun. 410, 805–810 (2018). http://www.sciencedirect.com/science/article/pii/S0030401817310635. [polito_etal:2015]

    Article  ADS  Google Scholar 

  55. Kastner, S.O., Neupert, W.M., Swartz, M.: Solar-flare emission lines in the range from 66 to 171 A; transitions in highly ionized iron. Astrophys. J. 191, 261–270 (1974). [kastner_etal:74]

    Article  ADS  Google Scholar 

  56. Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments. Solar Phys. 275(1-2), 115–143 (2012). https://doi.org/10.1007/s11207-009-9487-6. [woods2012]

    Article  ADS  Google Scholar 

  57. Del Zanna, G., Woods, T.N.: Spectral diagnostics with the SDO EVE flare lines. Astron. Astrophys. 555, A59 (2013). https://doi.org/10.1051/0004-6361/201220988. [delzanna_mason:2018]

    Article  ADS  Google Scholar 

  58. Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., Shing, L., Stern, R., Tarbell, T., Wolfson, C.J., et al.: Initial calibration of the atmospheric imaging assembly (aia) on the solar dynamics observatory (sdo). Solar Phys. 275, 41–66 (2012). https://doi.org/10.1007/s11207-011-9804-8. [Boerner:2011]

    Article  ADS  Google Scholar 

  59. Voronov, D.L., Ahn, M., Anderson, E.H., Cambie, R., Chang, C.-H., Gullikson, E.M., Heilmann, R.K., Salmassi, F., Schattenburg, M.L., Warwick, T., Yashchuk, V.V., Zipp, L., Padmore, H.A.: High-efficiency 5000 lines/mm multilayer-coated blazed grating for extreme ultraviolet wavelengths. Opt. Lett. 35(15), 2615–2617 (2010). http://ol.osa.org/abstract.cfm?URI=ol-35-15-2615. [Voronov:2010]

    Article  ADS  Google Scholar 

  60. Del Zanna, G., Andretta, V., Cargill, P. J., Corso, A. J., Daw, A. N., Golub, L., Mason, H. E.: High Resolution Soft X-ray Spectroscopy and the Quest for the Hot (5–10 MK) Plasma in Solar Active Regions. Frontiers in Astronomy and Space Sciences, 8, 33 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Jody Corso.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corso, A.J., Del Zanna, G. & Polito, V. Future perspectives in solar hot plasma observations in the soft X-rays. Exp Astron 51, 453–474 (2021). https://doi.org/10.1007/s10686-021-09756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09756-2

Keywords

Navigation