Skip to main content
Log in

The Second Law of Thermodynamics at the Microscopic Scale

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In quantum statistical mechanics, equilibrium states have been shown to be the typical states for a system that is entangled with its environment, suggesting a possible identification between thermodynamic and von Neumann entropies. In this paper, we investigate how the relaxation toward equilibrium is made possible through interactions that do not lead to significant exchange of energy, and argue for the validity of the second law of thermodynamics at the microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Popescu, S., Short, A.J., Winter, A.: Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754 (2006)

    Article  Google Scholar 

  2. Tasaki, H.: From quantum dynamics to canonical distribution: general picture and a rigorous example. Phys. Rev. Lett. 80, 1373 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gemmer, J., Mahler, G.: Distribution of local entropy in the Hilbert space of bi-partite quantum systems: origin of Jayne’s principle. Eur. Phys. J. B 31, 249 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghì, N.: Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bartsch, C., Gemmer, J.: Dynamical typicality of quantum expectation values. Phys. Rev. Lett. 102, 110403 (2009)

    Article  ADS  Google Scholar 

  6. Skrzypczyk, P., Short, A.J., Popescu, S.: Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014)

    Article  ADS  Google Scholar 

  7. Gemmer, J., Mahler, G.: Entanglement and the factorization-approximation. Eur. Phys. J. D 17, 385 (2001)

    Article  ADS  Google Scholar 

  8. Unruh, W.G., Wald, R.M.: Evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D 52, 2176 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Unruh, W.G.: Decoherence without dissipation. Phil. Trans. R. Soc. A 370, 4454–4459 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Perez, A.: No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. Class. Quantum Grav. 32, 084001 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Goffredo Chirco, Tommaso De Lorenzo, Alejandro Perez, and Carlo Rovelli, for interesting discussions and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Josset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josset, T. The Second Law of Thermodynamics at the Microscopic Scale. Found Phys 47, 1185–1190 (2017). https://doi.org/10.1007/s10701-017-0104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0104-5

Keywords

Navigation