Skip to main content
Log in

Addressing the cosmological \(H_0\) tension by the Heisenberg uncertainty

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The uncertainty on measurements, given by the Heisenberg principle, is a quantum concept usually not taken into account in General Relativity. From a cosmological point of view, several authors wonder how such a principle can be reconciled with the Big Bang singularity, but, generally, not whether it may affect the reliability of cosmological measurements. In this letter, we express the Compton mass as a function of the cosmological redshift. The cosmological application of the indetermination principle unveils the differences of the Hubble-Lemaître constant value, \(H_0\), as measured from the Cepheids estimates and from the Cosmic Microwave Background radiation constraints. In conclusion, the \(H_0\) tension could be related to the effect of indetermination derived in comparing a kinematic with a dynamic measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D.: Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond LambdaCDM. Astrophys. J. 876, 85 (2019)

    Article  ADS  Google Scholar 

  2. Aghanim, N., et al.: [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209v2 [astro-ph.CO] (2019)

  3. Verde, L., Treu, T., Riess, A.G.: Tensions between the early and the late universe. Nat. Astron. 3, 891 (2019)

    Article  ADS  Google Scholar 

  4. Benetti, M., Miranda, W., Borges, H.A., Pigozzo, C., Carneiro, S., Alcaniz, J.S.: Looking for interactions in the cosmological dark sector. J. Cosm. Astropart. Phys. 1912, 023 (2019)

    Article  ADS  Google Scholar 

  5. Graef, L.L., Benetti, M., Alcaniz, J.S.: Primordial gravitational waves and the H0-tension problem. Phys. Rev. D 99, 43519 (2019)

    Article  ADS  Google Scholar 

  6. Benetti, M., Graef, L.L., Alcaniz, J.S.: The \(H_0\) and \(\sigma _8\) tensions and the scale invariant spectrum. J. Cosm. Astropart. Phys. 1807, 066 (2018)

    Article  ADS  Google Scholar 

  7. Bernal, J.L., Verde, L., Riess, A.G.: The trouble with \(H_0\). J. Cosm. Astropart. Phys. 1610, 019 (2016)

    Article  ADS  Google Scholar 

  8. Kang, Y., Lee, Y.W., Kim, Y.L., Chung, C., Ree, C.H.: Early-type host galaxies of type Ia Supernovae. II. Evidence for luminosity evolution in Supernova cosmology. Astrophys. J. 889, 8 (2020)

    Article  ADS  Google Scholar 

  9. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016); Errata Corrige: 121, 122902(E) (2018)

  10. Will, C.M.: Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. Phys. Rev. D 57, 2061 (1998)

    Article  ADS  Google Scholar 

  11. Aviles, A., Bravetti, A., Capozziello, S., Luongo, O.: Precision cosmology with Padé rational approximations: theoretical predictions versus observational limits. Phys. Rev. D 90, 043531 (2014)

    Article  ADS  Google Scholar 

  12. Capozziello, S., Ruchika, Sen, A.A.: Model independent constraints on dark energy evolution from low-redshift observations. Mon. Not. R. Astron. Soc. 484, 4484 (2019)

    Article  ADS  Google Scholar 

  13. Capozziello, S., D’Agostino, R., Luongo, O.: Extended gravity cosmography. Int. J. Mod. Phys. D 28, 1930016 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Tanabashi, M., and the Particle Data Group: Review of particle physics. Phys. Rev. D 98, 030001 (2018)

  15. Retinò, A., Spallicci, A.D.A.M., Vaivads, A.: Solar wind test of the de Broglie–Proca massive photon with Cluster multi-spacecraft data. Astropart. Phys. 82, 49 (2016)

    Article  ADS  Google Scholar 

  16. Williams, E.R., Faller, J.E., Hill, H.A.: New experimental test of Coulomb’s law: a laboratory upper limit on the photon rest mass. Phys. Rev. Lett. 26, 721 (1971)

    Article  ADS  Google Scholar 

  17. de Broglie, L.: Nouvelles Recherches sur la Lumière. Actualités Scientifiques et Industrielles, vol. 411. Hermann & \({\text{C}}^{\text{ ie }}\), Paris (1936)

  18. Stueckelberg, E.C.G.: Théorie de la radiation de photons de masse arbitrairement petite. Helv. Phys. Acta 30, 209 (1957)

    MathSciNet  MATH  Google Scholar 

  19. Boulware, D.G.: Renormalizeability of massive non-Abelian gauge fields: a functional integral approach. Ann. Phys. 56, 140 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  20. Guedelman, E.: Gauge invariance and mass without spontaneous symmetry breaking. Phys. Rev. Lett. 43, 543 (1979)

    Article  ADS  Google Scholar 

  21. Scharff Goldhaber, A., Nieto, M.M.: Photon and graviton mass limits. Rev. Mod. Phys. 82, 939 (2010)

    Article  ADS  Google Scholar 

  22. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. Dover Publications, Mineola (2012)

    MATH  Google Scholar 

  23. Bonetti, L., dos Santos Filho, L.R., Helayël-Neto, J.A., Spallicci, A.D.A.M.: Effective photon mass from Super and Lorentz symmetry breaking. Phys. Lett. B 764, 203 (2017)

    Article  ADS  Google Scholar 

  24. Bonetti, L., dos Santos Filho, L.R., Helayël-Neto, J.A., Spallicci, A.D.A.M.: Photon sector analysis of Super and Lorentz symmetry breaking: effective photon mass, bi-refringence and dissipation. Eur. Phys. J. C 78, 811 (2018)

    Article  ADS  Google Scholar 

  25. Nussinov, S.: Charge-nonconserving decays. Phys. Rev. Lett. 59, 2401 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SC and MB acknowledge the Istituto Nazionale di Fisica Nucleare (INFN), sezione di Napoli, iniziative specifiche MOONLIGHT2 and QGSKY. ADAMS acknowledges the Erasmus+ programme for visiting the Università di Napoli, SC the Université d’Orléans and Campus France for the hospitality. Authors thank the referees and J. A. Helayël-Neto for precious suggestions which allowed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Capozziello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capozziello, S., Benetti, M. & Spallicci, A.D.A.M. Addressing the cosmological \(H_0\) tension by the Heisenberg uncertainty. Found Phys 50, 893–899 (2020). https://doi.org/10.1007/s10701-020-00356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00356-2

Keywords

Navigation