Skip to main content
Log in

Asymptotic path-independent integrals for the evaluation of crack-tip parameters in a neo-Hookean material

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, we develop new asymptotic path-independent integrals for the evaluation of the crack tip parameters in a 2D neo-Hookean material. The new integrals are of both J-integral and interaction energy integral type and rely on the separation of the asymptotic boundary value problem into independent problems for each of the deformed coordinates. Both the plane stress and plane strain cases are considered. The integrals developed are used to compute the amplitude parameters of the asymptotic crack tip fields, which allows for direct extraction of these parameters from numerical results. A long strip with an edge crack under mixed loading modes is considered for both homogeneous and biomaterial cases. It is found that the asymptotic J-integrals produce good results for the first-order parameters while the interactions integrals produce good results for both the first and second-order parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Moran, B. Asymptotic path-independent integrals for the evaluation of crack-tip parameters in a neo-Hookean material. Int J Fract 224, 133–150 (2020). https://doi.org/10.1007/s10704-020-00452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-020-00452-4

Keywords

Navigation