Skip to main content
Log in

Prediction of Water Inflow into Tunnel Crossing Intersecting Faults Based on IDB Seepage Model

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Water inrush accident into tunnel has become a bottleneck problem restricting the construction of deep-buried long tunnels, and the effect of intersecting faults on water inflow into tunnel is more complicated. Based on in-situ water pressure test data, the change law of the seepage characteristics in fault zone is analyzed, and an improved Darcy–Brinkman seepage model based on the theory of three-district zoning of faults is established. By assuming that the permeability coefficient conforms to the superposition principle, the underground seepage numerical model of intersecting faults that with perpendicular directions to tunnel is established. Then five calculation conditions are analyzed when the tunnel excavation axis is located at different relative height of the fault intersection center, so as to obtain the effect of the relative vertical location of the tunnel to the fault intersection center on the water pressure field, the seepage velocity field and the water inflow into tunnel. The results show that water inflow into tunnel crossing intersecting faults has litter relationship with the upper or lower position between the fault intersection center and the tunnel, but mainly depends on the relative height between them. The smaller the relative height, the smaller the water pressure, the greater the water inflow. Compared with the theoretical formula method and the stochastic mathematical method, the numerical simulation method can reflect the gradual process of water inrush while encountering intersecting faults in excavation and the change law of water inflow in different space and time under specific geological conditions, which is most consistent with the in-situ water inflow monitoring data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Abdollahi MS, Najafi M, Bafghi AY, Marji MF (2019) A 3D numerical model to determine suitable reinforcement strategies for passing TBM through a fault zone, a case study: Safaroud water transmission tunnel, Iran. Tunnell Undergr Space Technol 88:186–199

    Article  Google Scholar 

  • Li SC, Xu ZH, Huang X et al (2018) Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels. Chin J Rock Mech Eng 37(5):1041–1068

    Google Scholar 

  • Li YY, Zhang SC, Xu YQ et al (2020) Experimental study on fracture and gushing mechanism of surrounding rock of fault caused by tunnel excavation disturbance. Rock Soil Mech 41(2):1–8

    Google Scholar 

  • Luo XW, He FL (2014) A study of geological structures inclined to disaster and models of water burst in deep-buried long tunnels. Mod Tunnell Technol 1(51):21–25

    Google Scholar 

  • Wang XT, Li SC, Xu ZH et al (2019a) An interval risk assessment method and management of water inflow and inrush in course of karst tunnel excavation. Tunn Undergr Space Technol 92:103033

    Article  Google Scholar 

  • Wang XT, Li SC, Xu ZH et al (2019b) Risk assessment of water inrush in karst tunnels excavation based on normal cloud model. Bull Eng Geol Environ 78(5):3783–3798

    Article  Google Scholar 

  • Wang XT, Li SC, Xu ZH et al (2019c) Analysis of factors influencing floor water inrush in coal mines: a nonlinear fuzzy interval assessment method. Mine Water Environ 38(1):81–92

    Article  Google Scholar 

  • Wu H, Yang XH, Chen XY (2017) Model test on water gushing characteristics of tunnel in water rich fault. J chang’an Univ (nat Sci Ed) 37(5):73–80

    Google Scholar 

  • Wu J, Wu L, Zhao CL (2020) Prediction of water inflow into a tunnel based on three-district zoning of faults. Earth Environ Sci 570(2):022070

    Google Scholar 

  • Wu J, Wu L, Sun M et al (2021) Analysis and research on blasting network delay of deep-buried diversion tunnel crossing fault zone based on EP-CEEMDAN-INHT. Geotechn Geol Eng 2021:1–10

    Google Scholar 

  • Xu ZH, Wang WY, Lin P et al (2021a) Hard-rock TBM jamming subject to adverse geological conditions: Influencing factor, hazard mode and a case study of Gaoligongshan Tunnel. Tunn Undergr Space Technol 108:103683

    Article  Google Scholar 

  • Xu ZH, Liu FM, Lin P et al (2021b) Non-destructive, in-situ, fast identification of adverse geology in tunnels based on anomalies analysis of element content. Tunn Undergr Space Technol 118:104146

    Article  Google Scholar 

  • Xu ZH, Lin P, Xing HL et al (2021c) Hydro-mechanical coupling response behaviors in tunnel subjected to a water-filled karst cave. Rock Mech Rock Eng 54(8):3737–3756

    Article  Google Scholar 

  • Xu ZH, Pan DD, Lin P et al (2021d) Numerical investigation of flow control technology for grouting and blocking of flowing water in karst conduits. Int J Numer Anal Meth Geomech 45(12):1712–1738

    Article  Google Scholar 

  • Zareia HR, Uromeihya A, Sharifzadeh M (2011) Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features. Tunn Undergr Space Technol 26(2):364–373

    Article  Google Scholar 

  • Zheng Z, Liu R, Zhang Q (2019) Numerical simulation and risk assessment of water inrush in a fault zone that contains a soft infill. Mine Water Environ 38(3):667–675

    Article  Google Scholar 

  • Zhu BB, Dong DJ, Wu L (2017) On the prediction of water inflow in deep buried diversion tunnel through water-rich fault. J Railw Sci Eng 14(11):2407–2417

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (41672260 and 41907259) and the scientific research program of Hubei Provincial Education Department (Q20202701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wu, L., Lu, Yn. et al. Prediction of Water Inflow into Tunnel Crossing Intersecting Faults Based on IDB Seepage Model. Geotech Geol Eng 40, 4041–4056 (2022). https://doi.org/10.1007/s10706-022-02137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-022-02137-2

Keywords

Navigation