Skip to main content
Log in

Cusp shapes of Hilbert–Blumenthal surfaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We introduce a new fundamental domain \(\mathscr {R}_n\) for a cusp stabilizer of a Hilbert modular group \(\Gamma \) over a real quadratic field \(K=\mathbb {Q}(\sqrt{n})\). This is constructed as the union of Dirichlet domains for the maximal unipotent group, over the leaves in a foliation of \(\mathcal {H}^2\times \mathcal {H}^2\). The region \(\mathscr {R}_n\) is the product of \(\mathbb {R}^+\) with a 3-dimensional tower \(\mathcal {T}_n\) formed by deformations of lattices in the ring of integers \(\mathbb {Z}_K\), and makes explicit the cusp cross section’s Sol 3-manifold structure and Anosov diffeomorphism. We include computer generated images and data illustrating various examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azuhata, T.: On the fundamental units and the class numbers of real quadratic fields. Nagoya Math. J. 95, 125–135 (1984)

    Article  MathSciNet  Google Scholar 

  2. Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces, vol. 4. Springer, Berlin (2015)

    MATH  Google Scholar 

  3. Blumenthal, O.: Über modulfunktionen von mehreren veränderlichen (Erste Hälfte). Mathematische Annalen 56, 509–548 (1903)

    Article  MathSciNet  Google Scholar 

  4. Blumenthal, O.: Über modulfunktionen von mehreren veränderlichen (Zweite Hälfte). Mathematische Annalen 58, 497–527 (1904)

    Article  MathSciNet  Google Scholar 

  5. Desmos Graphing Calculator. Available at https://www.desmos.com/calculator (2017) . Accessed 27 June 2017

  6. Cohn, H.: A numerical survey of the floors of various Hilbert fundamental domains. Math. Comput. 19(92), 594–605 (1965)

    Article  MathSciNet  Google Scholar 

  7. Cohn, H.: On the shape of the fundamental domain of the Hilbert modular group. Proc. Symp. Pure Math 8, 190–202 (1965)

    MathSciNet  Google Scholar 

  8. Cohn, H.: Note on how Hilbert modular domains become increasingly complicated. J. Math. Anal. Appl. 15(1), 55–59 (1966)

    Article  MathSciNet  Google Scholar 

  9. Cohn, H.: Some computer-assisted topological models of Hilbert fundamental domains. Math. Comput. 23(107), 475–487 (1969)

    Article  MathSciNet  Google Scholar 

  10. Deutsch, J.I.: Conjectures on the fundamental domain of the Hilbert modular group. Comput. Math. Appl. 59(2), 700–705 (2010)

    Article  MathSciNet  Google Scholar 

  11. Engel, P.: Dirichlet domains. In: Engel, P. (ed.) Geometric Crystallography, pp. 13–21. Springer, Berlin (1986)

    Chapter  Google Scholar 

  12. Götzky, F.: Über eine zahlentheoretische anwendung von modulfunktionen zweier veränderlicher. Mathematische Annalen 100(1), 411–437 (1928)

    Article  MathSciNet  Google Scholar 

  13. Hirzebruch, F.: The Hilbert modular group, resolution of the singularities at the cusps and related problems. In: Heidelberg, A.D., Zürich B.E. (eds.) Séminaire Bourbaki vol. 1970/71 Exposés 382–399. Lecture Notes in Mathematics, vol. 244, pp. 275–288. Springer, Berlin (1971)

  14. Maass, H.: Über Gruppen von hyperabelschen Transformationen. Weiss (1940)

  15. McMullen, C.T.: Foliations of Hilbert modular surfaces. Am. J. Math. 129, 183–215 (2007)

    Article  MathSciNet  Google Scholar 

  16. McReynolds, D.B.: Cusps of arithmetic orbifolds. arXiv preprint arXiv:math/0606571 (2006)

  17. McReynolds, D.B.: Cusps of Hilbert modular varieties. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 144, pp. 749–759. Cambridge University Press (2008)

  18. Siegel, C.L.: On Advanced Analytic Number Theory. Tata Institute for Fundamental Research, Bombay (1961)

    Google Scholar 

  19. Van Der Geer, G.: Hilbert Modular Surfaces, vol. 16. Springer, Berlin (2012)

    MATH  Google Scholar 

  20. Wolfram Research, Inc.: Mathematica, Version 11.1.10. Champaign, IL (2017)

Download references

Acknowledgements

This research paper has been made possible thanks to the financial support generously given by the FORDECyT-CONACyT (Mexico) Grant #265667, Universidad Nacional Autónoma de México. The second author was financed by Grant IN106817, PAPIIT, DGAPA, Universidad Nacional Autónoma de México. The authors also express their gratitude to Ian Agol, Kathleen Byrne, Jesse Ira Deutsch, Paul Garrett, Ben McReynolds, Jorge Millan and Walter Neumann for helpful suggestions and discussion; to the reviewer for their detailed comments and corrections; and to Dennis Ryan and Simon Woods for help with creating the computer generated images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Verjovsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, J., Verjovsky, A. Cusp shapes of Hilbert–Blumenthal surfaces. Geom Dedicata 206, 27–42 (2020). https://doi.org/10.1007/s10711-019-00474-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00474-w

Keywords

Mathematics Subject Classification

Navigation