Skip to main content
Log in

Multi-Objective Petrophysical Seismic Inversion Based on the Double-Porosity Biot–Rayleigh Model

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Petrophysical seismic inversion, aided by rock physics, aims at estimating reservoir properties based on reflection events, but it is generally based on the Gassmann equation, which precludes its applicability to complex reservoirs. To overcome this problem, we present a methodology based on the double-porosity Biot–Rayleigh (BR) model, which takes into account the rock heterogeneities. The volume ratio of inclusions in the BR model is treated as a spatially varying parameter, facilitating a better description of the pore microstructure. The method includes the Zoeppritz equations to extract reservoir properties from prestack data. To handle the ill-posedness of the inversion and achieve a stable solution, the algorithm is formulated as a multi-objective optimization based on the Bayes theorem, where the reservoir-property estimation is jointly conditioned to seismic and elastic data with multiple prior terms. The method is validated with field data of a tight gas sandstone reservoir, illustrating its effectiveness compared to the Gassmann-based estimation, reducing uncertainties and improving the accuracy of identifying gas zones.

Article Highlights

  • The petrophysical seismic inversion is based on the double-porosity Biot–Rayleigh model

  • Spatially varying inclusion volumes are used to describe complex pore structures

  • A multi-objective optimization with joint data misfit enables stable results

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aki K, Richards PG (1980) Quantitative seismology. W H Freeman & Co

  • Aleardi M, Ciabarri F, Calabrò R (2018) Two-stage and single-stage seismic-petrophysical inversions applied in the Nile Delta. Lead Edge 37(7):510–518

    Article  Google Scholar 

  • Astic T, Heagy LJ, Oldenburg DW (2021) Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model. Geophys J Int 224(1):40–68

    Article  Google Scholar 

  • Avseth P, Bachrach R (2005) Seismic properties of unconsolidated sands: tangential stiffness, Vp/Vs ratios and diagenesis. In: SEG Technical Program Expanded Abstracts, pp 1473–1476

  • Avseth P, Veggeland T (2014) Seismic screening of rock stiffness and fluid softening using rock-physics attributes. Interpretation 3(4):SAE85–SAE93

  • Azevedo L, Grana D, Amaro C (2019) Geostatistical rock physics AVA inversion. Geophys J Int 216(3):1728–1739

    Article  Google Scholar 

  • Bachrach R (2006) Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics 71(5):O53–O63

    Article  Google Scholar 

  • Ba J, Carcione JM, Nie J (2011) Biot-Rayleigh theory of wave propagation in double-porosity media. J Geophys Res 116:B06202

    Google Scholar 

  • Ba J, Xu W, Fu L-Y, Carcione JM, Zhang L (2017) Rock anelasticity due to patchy-saturation and fabric heterogeneity: a double double-porosity model of wave propagation. J Geophys Res 122:1949–1971

    Google Scholar 

  • Berryman JG, Pride SR, Wang HF (2002) A differential scheme for elastic properties of rocks with dry or saturated cracks. Geophys J Int 151:597–611

    Article  Google Scholar 

  • Bosch M, Cara L, Rodrigues J, Navarro A, Díaz M (2007) A Monte Carlo approach to the joint estimation of reservoir and elastic parameters from seismic amplitudes. Geophysics 72(6):O29–O39

    Article  Google Scholar 

  • Bosch M, Mukerji T, Gonzalez EF (2010) Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics 75(5):75A165-75A176

    Article  Google Scholar 

  • Bredesen K, Rasmussen R, Mathiesen A, Nielsen LH (2021) Seismic amplitude analysis and rock physics modeling of a geothermal sandstone reservoir in the southern part of the Danish Basin. Geothermics 89:101974

    Article  Google Scholar 

  • Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68(1):185–198

    Article  Google Scholar 

  • Carcione JM, Gurevich B, Santos JE, Picotti S (2013) Angular and frequency dependent wave velocity and attenuation in fractured porous media. Pure Appl Geophys 170:1673–1683

    Article  Google Scholar 

  • Carcione JM (2014) Wavefields in real media: Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media, 3rd edn. Elsevier

    Google Scholar 

  • Chen H, Moradi S, Innanen KA (2021) Joint inversion of frequency components of PP- and PSV-wave amplitudes for attenuation factors using second-order derivatives of anelastic impedance. Surv Geophys 42:961–987

    Article  Google Scholar 

  • Connolly PA, Hughes MJ (2016) Stochastic inversion by matching to large numbers of pseudo-wells. Geophysics 81(2):M7–M22

    Article  Google Scholar 

  • David EC, Zimmerman RW (2012) Pore structure model for elastic wave velocities in fluid-saturated sandstones. J Geophys Res 117:B07210

    Google Scholar 

  • de Figueiredo LP, Grana D, Roisenberg M, Rodrigues BB (2019) Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion. Geophysics 84(5):M1–M13

    Article  Google Scholar 

  • Dvorkin J, Gutierrez M, Grana D (2014) Seismic reflections of rock properties. Cambridge University Press

  • Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophysics 58(4):524–533

    Article  Google Scholar 

  • Fjeldstad T, Avseth P, Omre H (2021) A one-step Bayesian inversion framework for 3D reservoir characterization based on a Gaussian mixture model: a Norwegian Sea demonstration. Geophysics 86(2):R221–R236

    Article  Google Scholar 

  • Gassmann F (1951) Elastic waves through a packing of spheres. Geophysics 16(4):673–685

    Article  Google Scholar 

  • González EF, Mukerji T, Markov G (2008) Seismic inversion combining rock physics and multiple-point geostatistics. Geophysics 73(1):R11–R21

    Article  Google Scholar 

  • Grana D, Fjeldstad T, Omre H (2017) Bayesian Gaussian mixture linear inversion for geophysical inverse problems. Math Geosci 49:493–515

    Article  Google Scholar 

  • Grana D (2020) Bayesian petroelastic inversion with multiple prior models. Geophysics 85(5):M57–M71

    Article  Google Scholar 

  • Gunning J, Glinsky M (2007) Detection of reservoir quality using Bayesian seismic inversion. Geophysics 72(3):R37–R49

    Article  Google Scholar 

  • Gurevich B, Brajanovski M, Galvin RJ, Muller TM, Toms-Stewart J (2009) P-wave dispersion and attenuation in fractured and porous reservoirs: poroelasticity approach. Geophys Prospect 57(2):225–237

    Article  Google Scholar 

  • Guo Q, Ba J, Fu L-Y, Luo C (2021a) Joint seismic and petrophysical nonlinear inversion with Gaussian mixture-based adaptive regularization. Geophysics 86(6):R895–R911

    Article  Google Scholar 

  • Guo Q, Ba J, Luo C, Pang M (2021b) Seismic rock physics inversion with varying pore aspect ratio in tight sandstone reservoirs. J Petrol Sci Eng 207:109131

    Article  Google Scholar 

  • Hafez A, Majoor F, Castagna JP (2014) Deepwater reservoir heterogeneity delineation using rock physics and extended elastic impedance inversion: Nile Delta case study. Interpretation 2(4):T205–T219

    Article  Google Scholar 

  • Hammer H, Kolbjørnsen O, Tjelmeland H, Buland A (2012) lithofacies and fluid prediction from prestack seismic data using a Bayesian model with Markov process prior. Geophys Prospect 60(3):500–515

    Article  Google Scholar 

  • Hansen TM, Journel AG, Tarantola A, Mosegaard K (2006) Linear inverse Gaussian theory and geo-statistics. Geophysics 71(6):R101–R111

    Article  Google Scholar 

  • Huang G, Chen X, Luo C, Chen Y (2021a) Mesoscopic wave-induced fluid flow effect extraction by using frequency-dependent prestack waveform inversion. IEEE Trans Geosci Remote Sens 59(8):6510–6524

    Article  Google Scholar 

  • Huang G, Chen X, Li J, Saad OM, Fomel S, Luo C, Wang H, Cheng Y (2021b) The slope-attribute-regularized high-resolution prestack seismic inversion. Surv Geophys 42:625–671

    Article  Google Scholar 

  • Ingber L, Rosen B (1992) Genetic algorithms and very fast simulated reannealing: a comparison. Math Comput Model 16:87–100

    Article  Google Scholar 

  • Jalobeanu A, Blanc-Feraud L, Zerubia J (2002) Hyperparameter estimation for satellite image restoration using a MCMC maximum likelihood method. Pattern Recogn 35(2):341–352

    Article  Google Scholar 

  • Li K, Yin X, Zong Z, Lin H (2021) Direct estimation of discrete fluid facies and fluid indicators via a Bayesian seismic probabilistic inversion and a novel exact PP-wave reflection coefficient. J Petrol Sci Eng 196:107412

    Article  Google Scholar 

  • Luo C, Ba J, Carcione J, Huang G, Guo Q (2020) Joint PP and PS pre-stack seismic inversion for stratified models based on the propagator matrix forward engine. Surv Geophys 41:987–1028

    Article  Google Scholar 

  • Markov M, Levine V, Mousatov A, Kazatchenko E (2005) Elastic properties of double-porosity rocks using the differential effective medium model. Geophys Prospect 53(5):733–754

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press

  • Mosegaard K (1998) Resolution analysis of general inverse problems through inverse Monte Carlo sampling. Inverse Prob 14:405–426

    Article  Google Scholar 

  • Norris AN (1985) A differential scheme for the effective moduli of composites. Mech Mater 4(1):1–16

    Article  Google Scholar 

  • Pan X, Zhang G (2018) Model parameterization and PP-wave amplitude versus angle and azimuth (AVAZ) direct inversion for fracture quasi-weaknesses in weakly anisotropic elastic media. Surv Geophys 39:937–964

    Article  Google Scholar 

  • Pang M, Ba J, Fu L-Y, Carcione JM, Markus UI, Zhang L (2020) Estimation of microfracture porosity in deep carbonate reservoirs based on 3D rock-physics templates. Interpretation 8(4):43–52

    Article  Google Scholar 

  • Pang M, Ba J, Carcione JM (2021) Characterization of gas saturation in tight-sandstone reservoirs with rock-physics templates based on seismic Q. J Energ Eng 147(3):04021011

    Article  Google Scholar 

  • Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res 109:B01201

    Google Scholar 

  • Picotti S, Carcione JM, Ba J (2018) Rock-physics templates for seismic Q. Geophysics 84(1):MR13–MR23

  • Ryden N, Park CB (2006) Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra. Geophysics 71(4):R49–R58

    Article  Google Scholar 

  • Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3):1–29

    Article  Google Scholar 

  • Santos JE, Ravazzoli CL, Carcione JM (2004) A model for wave propagation in a composite solid matrix saturated by a single-phase fluid. J Acoust Soc Am 115:2749–2760

    Article  Google Scholar 

  • Sauvageau M, Gloaguen E, Claprood M, Lefebvre R, Bêche M (2014) Multimodal reservoir porosity simulation: an application to a tight oil reservoir. J Appl Geophys 107:71–79

    Article  Google Scholar 

  • Sen MK, Stoffa PL (2013) Global optimization methods in geophysical inversion. Cambridge University Press

  • Spikes K, Mukerji T, Dvorkin J, Mavko G (2007) Probabilistic seismic inversion based on rock- physics models. Geophysics 72(5):R87–R97

    Article  Google Scholar 

  • Teillet T, Fournier F, Zhao L, Borgomano J, Hong F (2021) Geophysical pore type inversion in carbonate reservoir: integration of cores, well logs, and seismic data (Yadana field, offshore Myanmar). Geophysics 86(3):B149–B164

    Article  Google Scholar 

  • Wang E, Carcione JM, Ba J, Liu Y (2020) Reflection and transmission of plane elastic waves at an interface between two double-porosity media: effect of local fluid flow. Surv Geophys 41:283–322

    Article  Google Scholar 

  • Wang H, Tang X (2021) Inversion of dry and saturated P- and S-wave velocities for the pore-aspect-ratio spectrum using a cracked porous medium elastic wave theory. Geophysics 86(6):A57–A62

    Article  Google Scholar 

  • Wang P, Chen X, Li X, Cui Y, Li J, Wang B (2021) Analysis and estimation of an inclusion-based effective fluid modulus for tight gas-bearing sandstone reservoirs. IEEE Trans Geosci Remote Sens (online). https://doi.org/10.1109/TGRS.2021.3099134

    Article  Google Scholar 

  • Xu S, White RE (1995) A new velocity model for clay-sand mixtures. Geophys Prospect 43:91–118

    Article  Google Scholar 

  • Yan J, Li X, Liu E (2002) Effects of pore aspect ratios on velocity prediction from well-log data. Geophys Prospect 50(3):289–300

    Article  Google Scholar 

  • Zhao L, Nasser M, Han DH (2013) Quantitative geophysical pore type characterization and its geological implication in carbonate reservoirs. Geophys Prospect 61(4):827–841

    Article  Google Scholar 

  • Zong Z, Yin X, Wu G (2015) Geofluid discrimination incorporating poroelasticity and seismic reflection inversion. Surv Geophys 36:659–681

    Article  Google Scholar 

  • Zidan A, Li YE, Cheng A (2021) A Pareto multi-objective optimization approach for anisotropic shale models. J Geophys Res 126:e2020JB021476

Download references

Acknowledgements

We appreciate the editor and two anonymous reviewers for their valuable comments. This work is supported by the National Nature Science Foundation of China (41974123, 42104128), the Jiangsu Province Science Fund for Distinguished Young Scholars (BK20200021), and the Natural Science Foundation of Zhejiang Province (LQ21D040001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Biot–Rayleigh equation and its plane-wave solution

Ba et al. (2011) proposed the Biot–Rayleigh model to describe the seismic wave propagation in a double-porosity medium. The governing equations are

$$ \begin{aligned} & N\nabla^{2} {\mathbf{u}} + \left( {A + N} \right)\nabla \varepsilon + Q_{1} \left( {\zeta^{\left( 1 \right)} + \phi_{c} \varsigma } \right) + Q_{2} \left( {\zeta^{\left( 2 \right)} - \phi_{1} \varsigma } \right) \\ \quad = \rho_{11} {\mathbf{\ddot{u}}} + \rho_{12} {\mathbf{\ddot{U}}}^{\left( 1 \right)} + \rho_{13} {\mathbf{\ddot{U}}}^{\left( 2 \right)} + b_{1} \left( {{\dot{\mathbf{u}}} - {\dot{\mathbf{U}}}^{\left( 1 \right)} } \right) + b_{2} \left( {{\dot{\mathbf{u}}} - {\dot{\mathbf{U}}}^{\left( 2 \right)} } \right), \\ \end{aligned} $$
(19)
$$ Q_{1} \nabla \varepsilon + R_{1} \nabla \left( {\zeta^{\left( 1 \right)} + \phi_{c} \varsigma } \right) = \rho_{12} {\mathbf{\ddot{u}}} + \rho_{22} {\mathbf{\ddot{U}}}^{\left( 1 \right)} - b_{1} \left( {{\dot{\mathbf{u}}} - {\dot{\mathbf{U}}}^{\left( 1 \right)} } \right), $$
(20)
$$ Q_{2} \nabla \varepsilon + R_{2} \nabla \left( {\zeta^{\left( 2 \right)} - \phi_{1} \varsigma } \right) = \rho_{13} {\mathbf{\ddot{u}}} + \rho_{33} {\mathbf{\ddot{U}}}^{\left( 1 \right)} - b_{2} \left( {{\dot{\mathbf{u}}} - {\dot{\mathbf{U}}}^{\left( 2 \right)} } \right), $$
(21)
$$ \begin{gathered} \phi_{c} \left( {Q_{1} \varepsilon + R_{1} \left( {\zeta^{\left( 1 \right)} + \phi_{c} \varsigma } \right)} \right) - \phi_{1} \left( {Q_{2} \varepsilon + R_{2} \left( {\zeta^{\left( 2 \right)} - \phi_{1} \varsigma } \right)} \right) \hfill \\ \, = \frac{1}{3}\rho_{f} \ddot{\varsigma }R_{0}^{2} \frac{{\phi_{1}^{2} \phi_{2} \phi_{20} }}{{\phi_{10} }} + \frac{1}{3}\frac{{\eta \phi_{1}^{2} \phi_{2} \phi_{20} }}{{\kappa_{1} }}\dot{\varsigma }R_{0}^{2} , \hfill \\ \end{gathered} $$
(22)

where u, U(1), and U(2) are the average particle displacements of the skeleton, and the average fluid displacements in the host and inclusion, respectively, with volume strains ε, ζ(1), and ζ(2), ϕ10 and ϕ20 are the porosities of the host and inclusion with their absolute porosities ϕ1 and ϕ2, κ1 and η are the host-medium permeability and fluid viscosity, respectively, ς denotes the fluid strain increment in the local fluid flow and Ro is the radius of inclusion. The equations contain six stiffness parameters A, N, Q1, Q2, R1, R2, five density coefficients ρ11, ρ12, ρ13, ρ22, ρ33, and two Biot dissipation coefficients b1 and b2.

By substituting a plane-wave kernel into Eqs. (19)–(20), the complex wave number k can be obtained from

$$ \left| {\begin{array}{*{20}c} {a_{11} k^{2} + b_{11} } & {a_{12} k^{2} + b_{12} } & {a_{13} k^{2} + b_{13} } \\ {a_{21} k^{2} + b_{21} } & {a_{22} k^{2} + b_{22} } & {a_{23} k^{2} + b_{23} } \\ {a_{31} k^{2} + b_{31} } & {a_{32} k^{2} + b_{32} } & {a_{33} k^{2} + b_{33} } \\ \end{array} } \right| = 0, $$
(23)

where

$$ \begin{gathered} a_{11} = A + 2N + {\text{i}}(Q_{2} \phi_{1} - Q_{1} \phi_{2} )x_{1} , \hfill \\ b_{11} = - \rho_{11} \omega^{2} + {\text{i}}\omega \left( {b_{1} + b_{2} } \right), \hfill \\ a_{12} = Q_{1} + {\text{i}}(Q_{2} \phi_{1} - Q_{1} \phi_{2} )x_{2} , \, b_{12} = - \rho_{12} \omega^{2} - {\text{i}}\omega b_{1} , \hfill \\ a_{13} = Q_{2} + {\text{i}}(Q_{2} \phi_{1} - Q_{1} \phi_{2} )x_{3} , \, b_{13} = - \rho_{13} \omega^{2} - {\text{i}}\omega b_{2} , \hfill \\ a_{21} = Q_{1} - {\text{i}}R_{{1}} \phi_{2} x_{3} , \, b_{21} = - \rho_{12} \omega^{2} - {\text{i}}\omega b_{1} , \hfill \\ a_{22} = R_{1} - {\text{i}}R_{{1}} \phi_{2} x_{2} , \, b_{22} = - \rho_{22} \omega^{2} + {\text{i}}\omega b_{1} , \hfill \\ a_{23} = - {\text{i}}R_{{1}} \phi_{2} x_{3} , \, b_{23} = 0, \hfill \\ a_{31} = Q_{2} + {\text{i}}R_{{2}} \phi_{1} x_{1} , \, b_{31} = - \rho_{13} \omega^{2} - {\text{i}}\omega b_{2} , \hfill \\ a_{32} = {\text{i}}R_{{2}} \phi_{1} x_{2} , \, b_{32} = 0, \hfill \\ a_{33} = R_{2} + {\text{i}}R_{{2}} \phi_{1} x_{3} , \, b_{33} = - \rho_{33} \omega^{2} + {\text{i}}\omega b_{2} . \hfill \\ \end{gathered} $$
(24)

and

$$ \begin{gathered} x_{1} = \frac{{{\text{i}}\left( {\phi_{{2}} Q_{1} - \phi_{{1}} Q_{2} } \right)}}{Z}, \, x_{2} = \frac{{{\text{i}}\phi_{{2}} R_{1} }}{Z}, \, x_{3} = - \frac{{{\text{i}}\phi_{{1}} R_{2} }}{Z}, \hfill \\ Z = \frac{{{\text{i}}\omega \eta \phi_{1}^{2} \phi_{2} \phi_{20} R_{0}^{2} }}{{3\kappa_{1} }} - \frac{{\rho_{f} \omega^{2} R_{0}^{2} \phi_{1}^{2} \phi_{2} \phi_{20} }}{{3\phi_{10} }} - \left( {\phi_{2}^{2} R_{1} + \phi_{1}^{2} R_{2} } \right) \, . \hfill \\ \end{gathered} $$
(25)

Equation (23) yields three roots, and we choose the fast P-wave one (the classical compressional wave). The phase velocity is given by Carcione (2014) as

$$ V_{{\text{P}}} = \left[ {{\text{Re}}\left( {\frac{k}{\omega }} \right)} \right]^{ - 1} , $$
(26)

where ω is the angular frequency.

Appendix B: Update of posterior weights

Jalobeanu et al. (2002) and Guo et al. (2021a) proposed to update the regularization parameters by using the Monte-Carlo-based maximum likelihood method. We hereby extend the method to be applicable to the multi-objective optimization problem with joint data misfits.

The likelihood function of Eq. (15) is

$$ P\left( {{\mathbf{d}}_{{{\text{seis}}}} ,{\mathbf{d}}_{{{\text{elas}}}} |{{\varvec{\upbeta}}}} \right) = \sum\limits_{{{\mathbf{z}} \in \Omega }} {P\left( {{\mathbf{d}}_{{{\text{seis}}}} ,{\mathbf{d}}_{{{\text{elas}}}} |{\mathbf{z}},{{\varvec{\upbeta}}}} \right) \times P\left( {{\mathbf{z}}|{{\varvec{\upbeta}}}} \right)} , $$
(27)

where the Ω denotes the data space of z. Given the known β, we have

$$ \begin{gathered} P\left( {{\mathbf{d}}_{{{\text{seis}}}} ,{\mathbf{d}}_{{{\text{elas}}}} |{\mathbf{z}},{{\varvec{\upbeta}}}} \right) = P\left( {{\mathbf{d}}_{{{\text{seis}}}} ,{\mathbf{d}}_{{{\text{elas}}}} |{\mathbf{z}}} \right) \approx P\left( {{\mathbf{d}}_{{{\text{seis}}}} |{\mathbf{z}}} \right) \times P\left( {{\mathbf{d}}_{{{\text{elas}}}} |{\mathbf{z}},{{\varvec{\upbeta}}}} \right) \hfill \\ \, = \frac{1}{{K_{{\text{s}}} }}\exp \left( {\frac{{}}{{}}F_{1} \left( {{\mathbf{d}}_{{{\text{seis}}}} ,{\mathbf{z}}} \right)} \right) \times \frac{1}{{K_{{\text{e}}} }}\exp \left( {\frac{{}}{{}}F_{2} \left( {{\mathbf{d}}_{{{\text{elas}}}} ,{\mathbf{z}},\beta_{1} } \right)} \right), \hfill \\ \end{gathered} $$
(28)

where F1 and F2 denote the seismic and elastic misfit terms in Eq. (12), and

$$ K_{{\text{s}}} = \sum\limits_{{{\mathbf{z}} \in \Omega }} {P({\mathbf{d}}_{{{\text{seis}}}} |{\mathbf{z}})} {\text{ and }}K_{{\text{e}}} = \sum\limits_{{{\mathbf{z}} \in \Omega }} {P({\mathbf{d}}_{{{\text{elas}}}} |{\mathbf{z}},\beta_{1} )} $$
(29)

are the normalization constants.

The prior distribution of P(z|β) is

$$ P({\mathbf{z}}|{{\varvec{\upbeta}}}) = \frac{1}{{K_{{\upbeta }} }}\exp \left( {F_{3} \left( {{\mathbf{z}},\beta_{2} } \right)} \right), $$
(30)

where F3 denotes the prior term in Eq. (12), and

$$ K_{{\upbeta }} = \sum\limits_{{{\mathbf{z}} \in \Omega }} {\exp } \left( {F_{3} ({\mathbf{z}},\beta_{2} )} \right) $$
(31)

is a normalization constant.

By substituting Eqs. (28) and (30) into (27), the likelihood function of β can be expressed as the negative logarithm of P(dseis,delas|β)

$$ L\left( {{\varvec{\upbeta}}} \right) = - \ln \left( {\frac{{K_{{\text{z}}} }}{{K_{{\text{s}}} K_{{\text{e}}} K_{{\upbeta }} }}} \right) = \ln K_{{\text{z}}} - \ln K_{{\text{s}}} - \ln K_{{\text{e}}} - \ln K_{{\upbeta }} , $$
(32)

with

$$ K_{{\text{z}}} = \sum\limits_{{{\mathbf{z}} \in \Omega }} {\exp } \left( {F_{1} \left( {{\mathbf{d}}_{{{\text{seis}}}} ,{\mathbf{z}}} \right)} \right.\;F_{2} \left( {{\mathbf{d}}_{{{\text{elas}}}} ,{\mathbf{z}},\beta_{1} } \right)F_{3} \left( {{\mathbf{z}},\beta_{2} } \right)). $$
(33)

By employing the Gauss–Newton descent method to minimize the log-likelihood function 32, β can be iteratively updated as

$$ {{\varvec{\upbeta}}}_{{}}^{{\left( {n + {1}} \right)}} = {{\varvec{\upbeta}}}_{{}}^{\left( n \right)} - \left[ {\left( {\frac{\partial L}{{\partial {{\varvec{\upbeta}}}}}} \right)^{{\text{T}}} \left( {\frac{\partial L}{{\partial {{\varvec{\upbeta}}}}}} \right)} \right]\frac{\partial L}{{\partial {{\varvec{\upbeta}}}}}, $$
(34)

with

$$ \begin{gathered} \frac{\partial L}{{\partial {{\varvec{\upbeta}}}}} \, = \sum\limits_{{{\mathbf{z}} \in \Omega }} {\left( { - \frac{{\partial F_{2} }}{{\partial {{\varvec{\upbeta}}}}} - \frac{{\partial F_{3} }}{{\partial {{\varvec{\upbeta}}}}}} \right)\frac{1}{{K_{{\text{z}}} }}\exp \left( {F_{1} } \right.\left. {\;F_{2} \;F_{3} } \right)} \hfill \\ \, - \sum\limits_{{{\mathbf{z}} \in \Omega }} {\left( { - \frac{{\partial F_{2} }}{{\partial {{\varvec{\upbeta}}}}}} \right)\frac{1}{{K_{{\text{e}}} }}\exp \left( {F_{2} } \right)} - \sum\limits_{{{\mathbf{z}} \in \Omega }} {\left( { - \frac{{\partial F_{3} }}{{\partial {{\varvec{\upbeta}}}}}} \right)\frac{1}{{K_{{\upbeta }} }}\exp \left( {F_{3} } \right)} . \hfill \\ \end{gathered} $$
(35)

Introducing the expectation of z, regarding its probability distribution, Eq. (35) can be estimated from the expectations of one prior distribution (Eβ) and two posterior distributions (Ez and Ee) as

$$ \frac{\partial L}{{\partial {{\varvec{\upbeta}}}}} = - E_{{\text{z}}} \left( {\frac{{\partial F_{2} }}{{\partial {{\varvec{\upbeta}}}}}} \right) - E_{{\text{z}}} \left( {\frac{{\partial F_{3} }}{{\partial {{\varvec{\upbeta}}}}}} \right) + E_{{\text{e}}} \left( {\frac{{\partial F_{2} }}{{\partial {{\varvec{\upbeta}}}}}} \right) + E_{{\upbeta }} \left( {\frac{{\partial F_{3} }}{{\partial {{\varvec{\upbeta}}}}}} \right). $$
(36)

By setting the quadratic form of \({{\varvec{\upbeta}}} = \left[ {\beta_{1}^{2} ,\beta_{2}^{2} } \right]^{{\text{ T}}}\) to compute the derivative and to ensure its value positive, the derivative in Eq. (32) [or Eq. (16)] can be estimated as

$$ \frac{\partial L}{{\partial {{\varvec{\upbeta}}}}} = \left( \begin{gathered} \frac{\partial L}{{\partial \beta_{1} }} \hfill \\ \frac{\partial L}{{\partial \beta_{2} }} \hfill \\ \end{gathered} \right) = \left( \begin{gathered} - 2\beta_{1} \left( {E_{{\text{z}}} \left( {F_{2}^{ * } } \right) - E_{{\text{e}}} \left( {F_{2}^{ * } } \right)} \right) \hfill \\ - 2\beta_{2} \left( {E_{{\text{z}}} \left( {F_{3}^{ * } } \right) - E_{\beta } \left( {F_{3}^{ * } } \right)} \right) \hfill \\ \end{gathered} \right), $$
(37)

where F2* and F3*denote the F2 and F3 terms without β1 and β2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Ba, J. & Carcione, J.M. Multi-Objective Petrophysical Seismic Inversion Based on the Double-Porosity Biot–Rayleigh Model. Surv Geophys 43, 1117–1141 (2022). https://doi.org/10.1007/s10712-022-09692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09692-6

Keywords

Navigation