Skip to main content

Advertisement

Log in

Earthquake Genesis and Earthquake Early Warning Systems: Challenges and a Way Forward

  • Review Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Several natural hazards, including earthquakes, may trigger disasters and the presence of disaster drivers further lead to the massive loss of life and property, every year around the world. The earthquakes are unavoidable, as exact earthquake prediction in terms of date, and time is difficult. However, with the advancement in technology, earthquake early warning (EEW) has emerged as a life-saving guard in many earthquake-prone countries. Unlike other warning systems (where hours of warning are possible), only a few seconds of warning is possible in the EEW system, but this warning may be very helpful in saving human lives by taking the proper action. The concept of EEW relies on using the initial few seconds of information from nearby instruments, performing basic calculations, and issuing the warning to the farther areas. A dense network or enough network coverage is the backbone of an EEW system. Because of insufficient station coverage, the estimated earthquake location is error-prone, which in turn may cause problems for EEW in terms of estimating strong shaking for the affected areas. Seismic instrumentation for EEW has improved significantly in the last few years considering the station coverage, data quality, and related applications. Many countries including the USA, Mexico, Japan, Taiwan, and South Korea have developed EEW systems and are issuing a warning to the public and authorities. Several other countries, namely China, Turkey, Italy, and India are in process of developing and testing the EEW system. This article discusses the challenges and future EEW systems developed around the world along with different parameters used for EEW.

Article Highlights

  • This article aims to provide a comprehensive review related to the development

  • The explicit emphasis is on the scientific development of EEW parameters

  • The challenges and future scopes for the effective implementation of EEWS are discussed in terms of the correct location, the magnitude estimation, the region-specific use of ground motion prediction equations, communication technologies, and general public awareness

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alcik H, Ozel O, Wu YM, Ozel NM, Erdik M (2011) An alternative approach for the Istanbul earthquake early warning system. Soil Dyn Earthq Eng 31(2):181–187

    Article  Google Scholar 

  • Alcik H, Ozel O, Apaydin N, Erdik M (2009) A study on warning algorithms for Istanbul earthquake early warning system. Geophys Res Lett 36(5)

  • Allen RM, Kanamori H (2003) The potential for earthquake early warning in southern California. Science. https://doi.org/10.1126/science.1080912

    Article  Google Scholar 

  • Bhardwaj R, Sharma ML (2018) Lead time for cities of Northern India by using multiparameter EEW algorithm. Int J Geophys. https://doi.org/10.1155/2018/9086205

    Article  Google Scholar 

  • Bock Y, Nikolaidis RM, de Jonge PJ, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the global positioning system. J Geophys Res Solid Earth 105(B12):28223–28253

    Article  Google Scholar 

  • Bohnhoff M, Bulut F, Dresen G, Malin PE, Eken T, Aktar M (2013) An earthquake gap south of Istanbul. Nat Commun 4(1):1–6

    Article  Google Scholar 

  • Boore DM, Bommer JJ (2005) Processing of strong-motion accelerograms: needs, options and consequences. Soil Dyn Earthq Eng 25(2):93–115

    Article  Google Scholar 

  • Böse M, Ionescu C, Wenzel F (2007) Earthquake early warning for Bucharest, Romania: novel and revised scaling relations. Geophys Res Lett. https://doi.org/10.1029/2007GL029396

    Article  Google Scholar 

  • Böse M, Wenzel F, Erdik M (2008) PreSEIS: a neural network-based approach to earthquake early warning for finite faults. Bull Seismol Soc Am 98(1):366–382. https://doi.org/10.1785/0120070002

    Article  Google Scholar 

  • Bradley BA (2015) Correlation of arias intensity with amplitude, duration and cumulative intensity measures. Soil Dyn Earthq Eng 78:89–98. https://doi.org/10.1016/j.soildyn.2015.07.009

    Article  Google Scholar 

  • Brown HM, Allen RM, Grasso VF (2009) Testing elarms in Japan. Seismol Res Lett 80(5):727–739. https://doi.org/10.1785/gssrl.80.5.727

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24(1):139–171. https://doi.org/10.1193/1.2857546

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2012) Cumulative absolute velocity (CAV) and seismic intensity based on the PEER-NGA database. Earthq Spectra 28(2):457–485. https://doi.org/10.1193/1.4000012

    Article  Google Scholar 

  • Chamoli BP, Kumar A, Chen DY, Gairola A, Jakka RS, Pandey B, Kumar P, Rathore G (2021) A prototype earthquake early warning system for northern India. J Earthq Eng 25(12):2455–2473

    Article  Google Scholar 

  • Chen DY, Hsiao NC, Wu YM (2015) The earthworm based earthquake alarm reporting system in Taiwan. Bull Seismol Soc Am 105(2A):568–579. https://doi.org/10.1785/0120140147

    Article  Google Scholar 

  • Chen DY, Wu YM, Chin TL (2017) An empirical evolutionary magnitude estimation for early warning of earthquakes. J Asian Earth Sci 135:190–197. https://doi.org/10.1016/j.jseaes.2016.12.028

    Article  Google Scholar 

  • Colombelli S, Zollo A, Festa G, Kanamori H (2012) Early magnitude and potential damage zone estimates for the great Mw9 Tohoku-Oki earthquake. Geophys Res Lett. https://doi.org/10.1029/2012GL053923

    Article  Google Scholar 

  • Cooper JD (1868) Earthquake indicator. San Francisco Bulletin, 3. San Franc. Publ. Co., San Francisco, CA

  • Cyranoski D (2011) Japan faces up to failure of its earthquake preparations: systems for forecasting, early warning and tsunami protection all fell short on 11 March. Nature 471(7340):556–558

    Article  Google Scholar 

  • EPRI (1991) Standardization of the cumulative absolute velocity. In: Electric Power Research Institute, Palo Alto, CA, prepared by Yanke Atomic Electric Company Report No: TR-100082

  • Erdik M, Fahjan Y, Ozel O, Alcik H, Mert A, Gul M (2003) Istanbul earthquake rapid response and the early warning system. Bull Earthq Eng 1(1):157–163

    Article  Google Scholar 

  • Espinosa Aranda JM, Jimenez A, Ibarrola G, Alcantar F, Aguilar A, Inostroza M, Maldonado S (1995) Mexico City seismic alert system. Seismol Res Lett 66:42–53. https://doi.org/10.1785/gssrl.66.6.42

    Article  Google Scholar 

  • Esteva L (1988) The Mexico earthquake of September 19, 1985-consequences, lessons, and impact on research and practice. Earthq Spectra 4(3):413–426. https://doi.org/10.1193/1.1585482

    Article  Google Scholar 

  • Festa G, Picozzi M, Caruso A, Colombelli S, Cattaneo M, Chiaraluce L, Elia L, Martino C, Marzorati S, Supino M, Zollo A (2018) Performance of earthquake early warning systems during the 2016–2017 Mw 5–6.5 Central Italy sequence. Seismol Res Lett 89(1):1–12. https://doi.org/10.1785/0220170150

    Article  Google Scholar 

  • Fujinawa Y, Noda Y (2013) Japan’s earthquake early warning system on 11 March 2011: performance, shortcomings, and changes. Earthq Spectra 29(1):341–368

    Article  Google Scholar 

  • Gizzi FT, Potenza MR (2020) The scientific landscape of November 23rd, 1980 Irpinia-Basilicata Earthquake: taking stock of (almost) 40 years of studies. Geosciences 10(12):482

    Article  Google Scholar 

  • Heaton TH (1985) A model for a seismic computerized alert network. Science 228(4702):987–990. https://doi.org/10.1126/science.228.4702.987

    Article  Google Scholar 

  • Holland A (2003) Earthquake data recorded by the MEMS accelerometer: field testing in Idaho. Seismol Res Lett 74(1):20–26. https://doi.org/10.1785/gssrl.74.1.20

    Article  Google Scholar 

  • Hsiao NC, Wu YM, Shin TC, Zhao L, Teng TL (2009) Development of earthquake early warning system in Taiwan. Geophys Res Lett 36(5):1–12. https://doi.org/10.1029/2008GL036596

    Article  Google Scholar 

  • Hsiao NC, Wu YM, Zhao L, Chen DY, Huang WT, Kuo KH, Shin TC, Leu PL (2011) A new prototype system for earthquake early warning in Taiwan. Soil Dyn Earthq Eng 31(2):201–8

  • Hsieh CY, Yih-Min W, Tai-Lin C, Kuo KH, Da-Yi C, Wang KS, Ya-Ting C, Wen-Yen C, Wei-Sen L, Ker SH (2014) Low cost seismic network practical applications for producing quick shaking maps in Taiwan. TAO Terrestrial Atmos Oceanic Sci 25(5):617. https://doi.org/10.3319/TAO.2014.03.27.01(T)

    Article  Google Scholar 

  • Hsu TY, Lin PY, Wang HH, Chiang HW, Chang YW, Kuo CH, Lin CM, Wen KL (2018) Comparing the performance of the NEEWS earthquake early warning system against the CWB system during the 6 February 2018 Mw 6.2 Hualien earthquake. Geophys Res Lett 45(12):6001–6007

    Google Scholar 

  • Iglesias A, Singh SK, Ordaz M, Santoyo MA, Pacheco J (2007) The seismic alert system for Mexico City: an evaluation of its performance and a strategy for its improvement. Bull Seismol Soc Am 97(5):1718–1729. https://doi.org/10.1785/0120050202

    Article  Google Scholar 

  • Ismail-Zadeh A (2021) Natural hazards and climate change are not drivers of disasters. Nat Hazards. https://doi.org/10.1007/s11069-021-05100-1

    Article  Google Scholar 

  • Ismail-Zadeh A, Sokolov V, Bonjer KP (2007) Tectonic stress, seismicity, and seismic hazard in the southeastern Carpathians. Nat Hazards 42(3):493–514

    Article  Google Scholar 

  • Ismail-Zadeh A, Matenco L, Radulian M, Cloetingh S, Panza G (2012) Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics 530:50–79

    Article  Google Scholar 

  • Johnson CE, Bittenbinder A, Bogaert B, Dietz L, Kohler W (1995) Earthworm: a flexible approach to seismic network processing. Iris Newsletter 14(2):1–4

    Google Scholar 

  • Kanamori H (2005) Real-time seismology and earthquake damage mitigation. Annu Rev Earth Planet Sci 33:195–214. https://doi.org/10.1146/annurev.earth.33.092203.122626

    Article  Google Scholar 

  • Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectonophysics 138(1):79–92

    Article  Google Scholar 

  • Kodera Y, Yamada Y, Hirano K, Tamaribuchi K, Adachi S, Hayashimoto N, Morimoto M, Nakamura M, Hoshiba M (2018) The propagation of local undamped motion (PLUM) method: a simple and robust seismic wavefield estimation approach for earthquake early warning. Bull Seismol Soc Am 108(2):983–1003

    Article  Google Scholar 

  • Kohler MD, Cochran ES, Given D, Guiwits S, Neuhauser D, Henson I, Hartog R, Bodin P, Kress V, Thompson S, Schwarz S (2018) Earthquake early warning ShakeAlert system: west coast wide production prototype. Seismol Res Lett 89(1):99–107. https://doi.org/10.1785/0220170140

    Article  Google Scholar 

  • Kumar G, Kumar A (2017) Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers. Smart Mater Struct 26(11):115013. https://doi.org/10.1088/1361-665X/aa8681

    Article  Google Scholar 

  • Kumar R, Zhao W (2018) Predominant frequency detection of seismic signal based on Gabor–Wigner transform for earthquake early warning systems. Asian J Civ Eng 19(8):927–936. https://doi.org/10.1007/s42107-018-0073-9

    Article  Google Scholar 

  • Kumar G, Kumar A, Jakka RS (2018) The particle swarm modified quasi bang-bang controller for seismic vibration control. Ocean Eng 166:105–116. https://doi.org/10.1016/j.oceaneng.2018.08.002

    Article  Google Scholar 

  • Kumar S, Mittal H, Roy KS, Wu YM, Chaubey R, Singh AP (2020) Development of earthquake early warning system for Kachchh, Gujarat, in India using τc and Pd. Arab J Geosci 13(14):1–11. https://doi.org/10.1007/s12517-020-05353-3

    Article  Google Scholar 

  • Kumar A, Mittal H (2018) Strong-motion instrumentation: current status and future scenario. In: Advances in Indian earthquake engineering and seismology. Springer, Cham, pp 35–54

  • Kumar A, Mittal H, Chamoli BP, Gairola A, Jakka RS, Srivastava A (2014) Earthquake early warning system for northern India. In: 15th symposium on earthquake engineering. Indian Institute of Technology, Roorkee, pp 11–13

  • Kumar G, Kumar R, Kumar A, Singh BM (2021) Development of modified LQG controller for mitigation of seismic vibrations using swarm intelligence, Int J Autom Control (Accepted for Publication)

  • Kuyuk HS, Allen RM (2013) A global approach to provide magnitude estimates for earthquake early warning alerts. Geophys Res Lett 40(24):6329–6333. https://doi.org/10.1002/2013GL058580

    Article  Google Scholar 

  • Legendre CP, Tseng TL, Mittal H, Hsu CH, Karakhanyan A, Huang BS (2017) Complex wave propagation revealed by peak ground velocity maps in the Caucasus Area. Seismol Res Lett 88(3):812–821. https://doi.org/10.1785/0220160178

    Article  Google Scholar 

  • Lockman AB, Allen RM (2005) Single-station earthquake characterization for early warning. Bull Seismol Soc Am 95(6):2029–2039. https://doi.org/10.1785/0120040241

    Article  Google Scholar 

  • Lonescu C, Böse M, Wenzel F, Marmureanu A, Grigore A, Marmureanu G (2007) An early warning system for deep Vrancea (Romania) earthquakes. In: Earthquake early warning systems. Springer, Berlin Heidelberg, pp 343–349

  • Maddaloni G, Caterino N, Occhiuzzi A (2011) Semi-active control of the benchmark highway bridge based on seismic early warning systems. Bull Earthq Eng 9(5):1703–1715. https://doi.org/10.1007/s10518-011-9259-1

    Article  Google Scholar 

  • Meier MA, Ross ZE, Ramachandran A, Balakrishna A, Nair S, Kundzicz P, Li Z, Andrews J, Hauksson E, Yue Y (2019) Reliable real-time seismic signal/noise discrimination with machine learning. J Geophys Res Solid Earth 124(1):788–800. https://doi.org/10.1029/2018JB016661

    Article  Google Scholar 

  • Mittal H, Kumar A, Wu YM, Kumar A (2016) Source study of M w 5.4 April 4, 2011 India-Nepal border earthquake and scenario events in the Kumaon-Garhwal Region. Arab J Geosci 9(5):1–15

    Article  Google Scholar 

  • Mittal H, Wu YM, Lin TL, Legendre CP, Gupta S, Yang BM (2019a) Time-dependent shake map for Uttarakhand Himalayas, India, using recorded earthquakes. Acta Geophys 67(3):753–763. https://doi.org/10.1007/s11600-019-00281-7

    Article  Google Scholar 

  • Mittal H, Wu YM, Sharma ML, Yang BM, Gupta S (2019b) Testing the performance of earthquake early warning system in northern India. Acta Geophys 67(1):59–75. https://doi.org/10.1007/s11600-018-0210-6

    Article  Google Scholar 

  • Mittal H, Yang BM, Tseng TL, Wu YM (2021) Importance of real-time PGV in terms of lead-time and shakemaps: results using 2018 ML 6.2 & 2019 ML 6.3 Hualien, Taiwan earthquakes. J Asian Earth Sci 220:104936. https://doi.org/10.1016/j.jseaes.2021.104936

    Article  Google Scholar 

  • Murray JR, Crowell BW, Grapenthin R, Hodgkinson K, Langbein JO, Melbourne T, Melgar D, Minson SE, Schmidt DA (2018) Development of a geodetic component for the US West Coast earthquake early warning system. Seismol Res Lett 89(6):2322–2336. https://doi.org/10.1785/0220180162

    Article  Google Scholar 

  • Nakamura Y (1988) On the urgent earthquake detection and alarm system (UrEDAS). In: Proceedings of the 9th world conference on earthquake engineering, vol 7, pp 673–678

  • Nazeri S, Shomali ZH, Colombelli S, Elia L, Zollo A (2017) Magnitude estimation based on integrated amplitude and frequency content of the initial P wave in earthquake early warning applied to Tehran. Iran Bull Seismol Soc Am 107(3):1432–1438. https://doi.org/10.1785/0120160380

    Article  Google Scholar 

  • Ohmachi T, Kawamura M, Yasuda S, Mimura C, Nakamura Y (1988) Damage due to the 1985 Mexico Earthquake and the ground conditions. Soils Found 28(3):149–159

    Article  Google Scholar 

  • Olson EL, Allen RM (2005) The deterministic nature of earthquake rupture. Nature 438(7065):212–215. https://doi.org/10.1038/nature04214

    Article  Google Scholar 

  • Oncescu MC, Marza VI, Rizescu M, Popa M (1999) The Romanian earthquake catalogue between 984–1997. In: Vrancea earthquakes: tectonics, hazard and risk mitigation. Springer, Dordrecht, pp 43–47

  • Peng H, Wu Z, Wu YM, Yu S, Zhang D, Huang W (2011) Developing a prototype earthquake early warning system in the Beijing capital region. Seismol Res Lett 82(3):394–403. https://doi.org/10.1785/gssrl.82.3.394

    Article  Google Scholar 

  • Peng C, Chen Y, Chen Q, Yang J, Wang H, Zhu X, Xu Z, Zheng Y (2017) A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning. Comput Geosci 100:179–187. https://doi.org/10.1016/j.cageo.2017.01.001

    Article  Google Scholar 

  • Peng C, Ma Q, Jiang P, Huang W, Yang D, Peng H, Chen L, Yang J (2020) Performance of a hybrid demonstration earthquake early warning system in the Sichuan-Yunnan border region. Seismol Res Lett 91(2A):835–846. https://doi.org/10.1785/0220190101

    Article  Google Scholar 

  • Rainieri C, Fabbrocino G, Cosenza E (2011) Integrated seismic early warning and structural health monitoring of critical civil infrastructures in seismically prone areas. Struct Health Monit 10(3):291–308. https://doi.org/10.1177/1475921710373296

    Article  Google Scholar 

  • Reed JW, Kassawara RP (1990) A criterion for determining exceedance of the operating basis earthquake. Nucl Eng Des 123(2–3):387–396. https://doi.org/10.1016/0029-5493(90)90259-Z

    Article  Google Scholar 

  • Sandeep Joshi A, Sah SK, Kumar P, Lal S, Kamal P (2019) Modelling of strong motion generation areas for a great earthquake in central seismic gap region of Himalayas using the modified semi-empirical approach. J Earth Syst Sci 128(4):1–12

    Google Scholar 

  • Satriano C, Wu YM, Zollo A, Kanamori H (2011) Earthquake early warning: concepts, methods and physical grounds. Soil Dyn Earthq Eng 31(2):106–118. https://doi.org/10.1016/j.soildyn.2010.07.007

    Article  Google Scholar 

  • Serdar Kuyuk H, Allen RM, Brown H, Hellweg M, Henson I, Neuhauser D (2014) Designing a network-based earthquake early warning algorithm for California: ElarmS-2. Bull Seismol Soc Am 104(1):162–173

    Article  Google Scholar 

  • Sheen DH, Park JH, Chi HC, Hwang EH, Lim IS, Seong YJ, Pak J (2017) The first stage of an earthquake early warning system in South Korea. Seismol Res Lett 88(6):1491–1498. https://doi.org/10.1785/0220170062

    Article  Google Scholar 

  • Shieh JT, Wu YM, Allen RM (2008) A comparison of τc and τpmax for magnitude estimation in earthquake early warning. Geophys Res Lett. https://doi.org/10.1029/2008GL035611

    Article  Google Scholar 

  • Sokolov V, Wenzel F, Furumura T (2009) On estimation of earthquake magnitude in Earthquake EarlyWarning systems. Earth, planets and space 61(12):1275–85

  • Strauss JA, Allen RM (2016) Benefits and costs of earthquake early warning. Seismol Res Lett 87(3):765–772

    Article  Google Scholar 

  • Suárez G, Espinosa-Aranda JM, Cuéllar A, Ibarrola G, García A, Zavala M, Maldonado S, Islas R (2018) A dedicated seismic early warning network: the Mexican Seismic Alert System (SASMEX). Seismol Res Lett 89(2A):382–391. https://doi.org/10.1785/0220170184

    Article  Google Scholar 

  • Tajima F, Hayashida T (2018) Earthquake early warning: what does “seconds before a strong hit” mean? Prog Earth Planet Sci 5(1):1–25

    Article  Google Scholar 

  • Teng TL, Wu L, Shin TC, Tsai YB, Lee WH (1997) One minute after: strong-motion map, effective epicenter, and effective magnitude. Bull Seismol Soc Am 87(5):1209–1219

    Article  Google Scholar 

  • Tsang LL, Allen RM, Wurman G (2007) Magnitude scaling relations from P-waves in southern California. Geophys Res Lett. https://doi.org/10.1029/2007GL031077

    Article  Google Scholar 

  • United Nations (2006) Global survey of early warning systems: an assessment of capacities, gaps and opportunities towards building a comprehensive global early warning system for all natural hazards. Technical report. United Nations

  • Wang Y, Li S, Song J (2020) Threshold-based evolutionary magnitude estimation for an earthquake early warning system in the Sichuan-Yunnan region, China. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-78046-2

    Article  Google Scholar 

  • Wu YM (2015) Progress on development of an earthquake early warning system using low-cost sensors. Pure Appl Geophys 172(9):2343–2351. https://doi.org/10.1007/s00024-014-0933-5

    Article  Google Scholar 

  • Wu YM, Kanamori H (2005a) Experiment on an onsite early warning method for the Taiwan early warning system. Bull Seismol Soc Am 95(1):347–353. https://doi.org/10.1785/0120040097

    Article  Google Scholar 

  • Wu YM, Kanamori H (2005b) Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves. Bull Seismol Soc Am 95(3):1181–1185. https://doi.org/10.1785/0120040193

    Article  Google Scholar 

  • Wu YM, Kanamori H (2008) Development of an earthquake early warning system using real-time strong motion signals. Sensors 8(1):1–9. https://doi.org/10.3390/s8010001

    Article  Google Scholar 

  • Wu YM, Mittal H (2021) A review on the development of earthquake warning system using low-cost sensors in Taiwan. Sensors 21(22):7649

    Article  Google Scholar 

  • Wu YM, Teng TL (2002) A virtual subnetwork approach to earthquake early warning. Bull Seismol Soc Am 92(5):2008–2018. https://doi.org/10.1785/0120010217

    Article  Google Scholar 

  • Wu YM, Zhao L (2006) Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophys Res Lett. https://doi.org/10.1029/2006GL026871

    Article  Google Scholar 

  • Wu YM, Hsiao NC, Teng TL, Shin TC (2002) Near real-time seismic damage assessment of the rapid reporting system. Terrest Atmos Ocean Sci 13(3):313–324

    Article  Google Scholar 

  • Wu YM, Chen DY, Lin TL, Hsieh CY, Chin TL, Chang WY, Li WS, Ker SH (2013) A high-density seismic network for earthquake early warning in Taiwan based on low cost sensors. Seismol Res Lett 84(6):1048–1054. https://doi.org/10.1785/0220130085

    Article  Google Scholar 

  • Wu YM, Liang WT, Mittal H, Chao WA, Lin CH, Huang BS, Lin CM (2016) Performance of a low-cost earthquake early warning system (P-alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismol Res Lett 87(5):1050–1059. https://doi.org/10.1785/0220160058

    Article  Google Scholar 

  • Wu YM, Mittal H, Huang TC, Yang BM, Jan JC, Chen SK (2019) Performance of a low-cost earthquake early warning system (P-Alert) and shake map production during the 2018 M w 6.4 Hualien, Taiwan, earthquake. Seismol Res Lett 90(1):19–29. https://doi.org/10.1785/0220180170

    Article  Google Scholar 

  • Wu YM, Mittal H, Chen DY, Hsu TY, Lin PY (2021) Earthquake early warning systems in Taiwan: current status. J Geol Soc India 97(12):1525–1532

    Article  Google Scholar 

  • Wu YM, Lin TL (2014) A test of earthquake early warning system using low cost accelerometer in Hualien, Taiwan. In: Early warning for geological disasters. Springer, Berlin, pp 253–261

  • Wurman G, Allen RM, Lombard P (2007) Toward earthquake early warning in northern California. J Geophys Res Solid Earth. https://doi.org/10.1029/2006JB004830

    Article  Google Scholar 

  • Yang BM, Huang TC, Wu YM (2018) ShakingAlarm: a nontraditional regional earthquake early warning system based on time-dependent anisotropic peak ground-motion attenuation relationships. Bull Seismol Soc Am 108(3A):1219–1230. https://doi.org/10.1785/0120170105

    Article  Google Scholar 

  • Yang BM, Mittal H, Wu YM (2021) Real-time production of PGA, PGV, intensity, and Sa shakemaps using dense MEMS-based sensors in Taiwan. Sensors 21(3):943. https://doi.org/10.3390/s21030943

    Article  Google Scholar 

  • Zhang H, Jin X, Wei Y, Li J, Kang L, Wang S, Huang L, Yu P (2016) An earthquake early warning system in Fujian, China. Bull Seismol Soc Am 106(2):755–765. https://doi.org/10.1785/0120150143

    Article  Google Scholar 

  • Zhang M, Qiao X, Seyler BC, Di B, Wang Y, Tang Y (2021) Brief communication: effective earthquake early warning systems: appropriate messaging and public awareness roles. Nat Hazard 21(10):3243–3250

    Article  Google Scholar 

  • Zhu Y, Mottaghi R, Kolve E, Lim JJ, Gupta A, Fei-Fei L, Farhadi A (2017) Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3357–3364

  • Zollo A, Lancieri M, Nielsen S (2006) Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records. Geophys Res Lett 33:23. https://doi.org/10.1029/2006GL027795

    Article  Google Scholar 

  • Zollo A, Amoroso O, Lancieri M, Wu YM, Kanamori H (2010) A threshold-based earthquake early warning using dense accelerometer networks. Geophys J Int 183(2):963–974. https://doi.org/10.1111/j.1365-246X.2010.04765.x

    Article  Google Scholar 

  • Zollo A, Colombelli S, Elia L, Emolo A, Festa G, Iannaccone G, Martino C, Gasparini P (2014) An integrated regional and on-site Earthquake Early Warning System for Southern Italy: concepts, methodologies and performances. In: Early warning for geological disasters. Springer, Berlin, pp 117–137

Download references

Acknowledgements

Authors HM and BS thankfully acknowledge the Director, National Center for Seismology, Ministry of Earth Sciences, New Delhi, for providing necessary permission to participate in this work. Author Sandeep is grateful to the Dept. of Geophysics, Banaras Hindu University, Varanasi, for providing the basic research facility. Authors are indebted to Prof. Michael J. Rycroft (Editor in Chief), Prof. Alik Ismail-Zadeh, and one anonymous reviewer for their constructive comments which helped in shaping the manuscript. All authors contributed towards the revision of the manuscript; however, Dr. Sandeep deserves special appreciation and equal contribution as the corresponding author for his tremendous efforts in improving this manuscript. Data employed in this work were obtained from the KiK-net (website http://www.k-net.bosai.go.jp/k-net/) and is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Mittal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Mittal, H., Sandeep et al. Earthquake Genesis and Earthquake Early Warning Systems: Challenges and a Way Forward. Surv Geophys 43, 1143–1168 (2022). https://doi.org/10.1007/s10712-022-09710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09710-7

Keywords

Navigation