Skip to main content

Advertisement

Log in

Chemical Resistance of Liquid-Phase-Sintered Materials Based on Si3N4–BN

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Materials based on Si3N4–BN were obtained by liquid-phase sintering using 20% (by volume) YAG as a sintering agent. Boron nitride powders with hexagonal (h-BN) and turbostratic (t-BN) structure were used to obtain composite materials. Highly amorphous t-BN promotes compaction of the materials with the composition (% by volume) 60 Si3N4 + 20 t-BN + 20 YAG and attainment of the highest physico-mechanical properties: ρ = 2.78 g/cm3; P = 14.5%; Eelas = 92.3 GPa; σb = 161.4 MPa. The chemical resistance of the obtained materials reaches 97.0% and increases in the sequence H2SO4 → HCl → HNO3, which attests intercrystalline corrosion without propagation into the interior of the material. However, the resistance to 48% HF is the lowest because of small cracks in the surface intercrystalline layers and deeper corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Steklo Keram., No. 7, 15 – 18 (2016); S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram., 73(7), 249 – 252 (2016).

  2. A. S. Lysenkov, K. A. Kim, D. D. Titov, et al., “Composite material Si3N4 /SiC with calcium aluminate additive,” J. of Physics: Conf. Ser., 1134(1), 012 – 036 (2018).

    Google Scholar 

  3. O. A. Lukianova, A. N. Khmara, S. N. Perevislov, et al., “Electrical resistivity of silicon nitride produced by various methods,” Ceram. Int., 45(7), 9497 – 9501 (2019).

    Article  CAS  Google Scholar 

  4. J. Eichler and C. Lesniak, “Boron nitride (BN) and BN composites for high-temperature applications,” J. Europ. Ceram. Soc., 28, 1105 – 1109 (2008).

    Article  CAS  Google Scholar 

  5. J. Eichler, K. Uibel, and C. Lesniak, “Boron nitride (BN) and boron nitride composites for applications under extreme conditions,” Adv. Sci. Technol., 65, 61 – 69 (2010).

    Article  CAS  Google Scholar 

  6. X. Duan, D. Jia, Z. Wu, et al., “Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics,” Scr. Mater., 68, 104 – 107 (2013).

    Article  CAS  Google Scholar 

  7. L. Zou, Y. Huang, and C. Wang, “The characterization and measurement of interfacial toughness for Si3N4 /BN composites by the four-point bend test,” J. Europ. Ceram. Soc., 24, 2861 – 2868 (2004).

    Article  CAS  Google Scholar 

  8. Z. Krstic and V. D. Krstic, “Young’s modulus, density and phase composition of pressureless sintered self-sealed Si3N4 /BN laminated structures,” J. Europ. Ceram. Soc., 28, 1723 – 1730 (2008).

    Article  CAS  Google Scholar 

  9. A. Kovalčíková, J. Balko, C. Balázsi, et al., “Influence of h-BN content on mechanical and tribological properties of Si3N4 /BN ceramic composites,” J. Europ. Ceram. Soc., 34, 3319 – 3328 (2014).

  10. C. Wang, Y. Huang, Q. Zan, et al., “Control of composition and structure in laminated silicon nitride/boron nitride composites,” J. Am. Ceram. Soc., 85, 2457 – 2461 (2002).

    Article  CAS  Google Scholar 

  11. Y.-H. Koh, H.-W. Kim, H.-E. Kim, et al., “Thermal shock resistance of fibrous monolithic Si3N4 /BN ceramics,” J. Europ. Ceram. Soc., 24, 2339 – 2347 (2004).

    Article  CAS  Google Scholar 

  12. Y. C. Shan, G. Wang, H. Ye, et al., “Fabrication of high strength α-SiAlON/BN composition ceramics by hot pressing,” Key Eng. Mater., Trans. Tech. Publ., 512, 816 – 819 (2012).

  13. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Hot-pressed ceramic SiC–YAG materials,” Inorg. Mater., 53(2), 220 – 225 (2017).

    Article  CAS  Google Scholar 

  14. S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, et al., “Microstructure and mechanical properties of SiC materials sintered in the liquid phase with the addition of a finely dispersed agent,” Refr. Industr. Ceram., 58(5), 577 – 582 (2018).

    Article  CAS  Google Scholar 

  15. Y. Li, P. Liu, X.,Wang, et al., “Interface structure and formation mechanism of BN/intergranular amorphous phase in pressureless sintered Si3N4 /BN composites,” Scr. Mater., 63, 185 – 188 (2010).

  16. L. Cavalli, “Reaction bonded Si3N4 (RBSN)/BN, composites for industrial applications,” Adv. Sci. Tech., 89, 57 – 62 (2014).

    Article  Google Scholar 

  17. S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Steklo Keram., No. 7, 34 – 38 (2013); S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Glass Ceram., 70(7 – 8), 265 – 268 (2013).

  18. N. I. Ershova and I. Yu. Kelina, “Thermophysical properties of composite materials in the Si3N4–BN system,” Refr. Industr. Ceram., 46(1), 12 – 14 (2005).

    Article  CAS  Google Scholar 

  19. I. Yu. Kelina, I. I. Tkacheva, A. V. Arakcheev, et al., “Tribological properties and testing of bearings fabricated from hot-pressed silicon nitride-based ceramics,” Refr. Industr. Ceram., 46(1), 15 – 20 (2005).

    Article  CAS  Google Scholar 

  20. L. Gao, X. Jin, J. Li, et al., “BN/Si3N4 nanocomposite with high strength and good machinability,” Mater. Sci. Eng. A, 415(1), 145 – 148 (2006).

    Article  Google Scholar 

  21. D. Wei, Q. Meng, and D. Jia, “Mechanical and tribological properties of hot-pressed h-BN/Si3N4 ceramic composites,” Ceram. Int., 32(5), 549 – 554 (2006).

  22. D. Wei, Q. Meng, and D. Jia, “Microstructure of hot-pressed h-BN/Si3N4 ceramic composites with Y2O3–Al2O3 sintering additive,” Ceram. Int., 33(2), 221 – 226 (2007).

  23. W. Dong, C. A. Wang, L. Yu et al, “Effect of BN content on microstructure and properties of porous BN/Si3N4 ceramics,” Acta Mater. Compositae Sinica, 1, 125 – 127 (2013).

    Google Scholar 

  24. M. Liu, Y. Song, X. Xu, et al., “Hot-pressing and mechanical properties of BN based composites,” in: Characterization of Minerals, Metals, and Materials (2015), pp. 479 – 485.

  25. M. Liu, Y. Song, X. Xu, et al., “Effect of magnesium aluminate spinel content on properties of BN based composites,” in: Characterization of Minerals, Metals, and Materials (2016), pp. 599 – 604.

  26. I. Yu. Kelina, N. I. Ershova, V. A. Drobinskaya, et al., “Chemical stability of a composite material based on silicon and boron nitrides,” Refr. Industr. Ceram., 39(11 – 12), 404 – 410 (1998).

  27. Yu. G. Gogotsi and V. A. Lavrenko, Corrosion of High-Performance Ceramics, Springer Science & Business Media (2012).

  28. T. Sato, Y. Tokunaga, T. Endo, et al., “Corrosion of silicon nitride ceramics in aqueous HF solutions,” J. Mater. Sci., 23(10), 3440 – 3446 (1988).

    Article  CAS  Google Scholar 

  29. S. W. Sharkawy and A. M. El-Aslabi, “Corrosion of silicon nitride ceramics in aqueous HCl and HF solutions at 27 – 80°C,” Corrosion Sci., 40(7), 1119 – 1129 (1998).

  30. V. A. Lavrenko and Y. G. Gogotsi, Corrosion of Structural Ceramics [in Russian], Metallurgy, Moscow (1989).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Steklo i Keramika, No. 12, pp. 17 – 24, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Slabov, V.S., Panteleev, I.B. et al. Chemical Resistance of Liquid-Phase-Sintered Materials Based on Si3N4–BN. Glass Ceram 76, 451–456 (2020). https://doi.org/10.1007/s10717-020-00221-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00221-8

Keywords

Navigation