Skip to main content

Advertisement

Log in

Identification of lipid raft glycoproteins obtained from boar spermatozoa

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The surface of the spermatozoa is coated with glycoproteins the redistribution of which during in vitro capacitation plays a key role in the subsequent fertilization process. Lipid rafts are membrane microdomains involved in signal transduction through receptors and include or recruit specific types of proteins and glycoproteins. Few studies have focused on identifying glycoproteins resident in the lipid rafts of spermatozoa. Proteins associated with lipid rafts modify their localization during capacitation. The objective of the study was to identify the glycoproteins associated with lipid rafts of capacitated boar spermatozoa through a lectin-binding assay coupled to mass spectrometry approach. From the proteomic profiles generated by the raft proteins extractions, we observed that after capacitation the intensity of some bands increased while that of others decreased. To determine whether the proteins obtained from lipid rafts are glycosylated, lectin blot assays were performed. Protein bands with a good resolution and showing significant glycosylation modifications after capacitation were analyzed by mass spectrometry. The bands of interest had an apparent molecular weight of 64, 45, 36, 34, 24, 18 and 15 kDa. We sequenced the 7 bands and 20 known or potential glycoproteins were identified. According to us, for ten of them this is the first time that their association with sperm lipid rafts is described (ADAM5, SPMI, SPACA1, Seminal plasma protein pB1, PSP-I, MFGE8, tACE, PGK2, SUCLA2, MDH1). Moreover, LYDP4, SPAM-1, HSP60, ZPBP1, AK1 were previously reported in lipid rafts of mouse and human spermatozoa but not in boar spermatozoa. We also found and confirmed the presence of ACR, ACRBP, AWN, AQN3 and PRDX5 in lipid rafts of boar spermatozoa. This paper provides an overview of the glycosylation pattern in lipid rafts of boar spermatozoa before and after capacitation. Further glycomic analysis is needed to determine the type and the variation of glycan chains of the lipid rafts glycoproteins on the surface of spermatozoa during capacitation and acrosome reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yanagimachi, R.: Mammalian fertilization. In: Knobil, E., Neill, J.D. (eds.) The Physiology of Reproduction, vol. I, pp. 189–317. Raven Press, New York (1994)

    Google Scholar 

  2. Flesch, F.M., Gadella, B.M.: Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta. 1469(3), 197–235 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Boerke, A., Tsai, P.S., Garcia-Gil, N., Brewis, I.A., Gadella, B.M.: Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology. 70(8), 1188–1196 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Fierro, R., Foliguet, B., Grignon, G., Daniel, M., Bene, M.C., Faure, G.C., Barbarino-Monnier, P.: Lectin-binding sites on human sperm during acrosome reaction: modifications judged by electron microscopy/flow cytometry. Arch. Androl. 36(3), 187–196 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. Jiménez, I., González-Márquez, H., Ortiz, R., Herrera, J.A., García, A., Betancourt, M., Fierro, R.: Changes in the distribution of lectin receptors during capacitation and acrosome reaction in boar spermatozoa. Theriogenology. 59, 1171–1180 (2003)

    Article  PubMed  Google Scholar 

  6. Talevi, R., Gualtieri, R.: Molecules involved in sperm-oviduct adhesion and release. Theriogenology. 73(6), 796–801 (2010doi:S0093-691X(09)00288-X [pii]). https://doi.org/10.1016/j.theriogenology.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  7. Fierro, R., Bonilla, E., Casas, E., Jimenez, I., Ducolomb, Y., Betancourt, M.: Inhibition of pig oocyte in vitro fertilization by the action of components of the zona pellucida. Theriogenology. 42(2), 227–234 (1994) doi:0093-691X(94)90266-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Jiménez, I., González-Márquez, H., Ortiz, R., Betancourt, M., Herrera, J., Fierro, R.: Expression of lectin receptors en the membrane surface of sperm of fertile and subfertile boar by flow cytometry. Arch. Androl. 48, 159–166 (2002)

    Article  PubMed  Google Scholar 

  9. Ohta, K., Sato, C., Matsuda, T., Toriyama, M., Lennarz, W.J., Kitajima, K.: Isolation and characterization of low density detergent-insoluble membrane (LD-DIM) fraction from sea urchin sperm. Biochem. Biophys. Res. Commun. 258(3), 616–623 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Xu, H., Liu, F., Srakaew, N., Koppisetty, C., Nyholm, P.G., Carmona, E., Tanphaichitr, N.: Sperm arylsulfatase a binds to mZP2 and mZP3 glycoproteins in a nonenzymatic manner. Reproduction. 144(2), 209–219 (2012). https://doi.org/10.1530/REP-11-0338

    Article  CAS  PubMed  Google Scholar 

  11. Guimarães, D.B., Barros, T.B., van Tilburg, M.F., Martins, J.A.M., Moura, A.A., Moreno, F.B., Monteiro-Moreira, A.C., Moreira, R.A., Toniolli, R.: Sperm membrane proteins associated with the boar semen cryopreservation. Anim. Reprod. Sci. 183, 27–38 (2017) https://doi.org/10.1016/j.anireprosci.2017.06.005

    Article  PubMed  Google Scholar 

  12. Jiménez, I., Fierro, R., González-Márquez, H., Mendoza-Hernández, G., Romo, S.: M, B.: carbohydrate affinity chromatography indicates that arylsulfatase-a from capacitated boar sperm has mannose and N-acetylglucosamine/sialic acid residues. Arch. Androl. 52(6), 455–462 (2006)

    Article  PubMed  Google Scholar 

  13. Brown, D.A.: Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda). 21, 430–439 (2006). https://doi.org/10.1152/physiol.00032.2006

    Article  CAS  Google Scholar 

  14. Fan, J., Sammalkorpi, M., Haataja, M.: Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation. FEBS Lett. 584(9), 1678–1684 (2010). https://doi.org/10.1016/j.febslet.2009.10.051

    Article  CAS  PubMed  Google Scholar 

  15. Helms, J.B., Zurzolo, C.: Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic. 5(4), 247–254 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Lingwood, D., Simons, K.: Lipid rafts as a membrane-organizing principle. Science. 327(5961), 46–50 (2010). https://doi.org/10.1126/science.1174621

    Article  CAS  PubMed  Google Scholar 

  17. Nyholm, T.K.: Lipid-protein interplay and lateral organization in biomembranes. Chem. Phys. Lipids. 189, 48–55 (2015). https://doi.org/10.1016/j.chemphyslip.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  18. van Gestel, R.A., Brouwers, J.F., Ultee, A., Helms, J.B., Gadella, B.M.: Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells. Cell Tissue Res. 363(1), 129–145 (2016). https://doi.org/10.1007/s00441-015-2272-y

    Article  CAS  PubMed  Google Scholar 

  19. Pike, L.J.: Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J. Lipid Res. 47(7), 1597–1598 (2006). https://doi.org/10.1194/jlr.E600002-JLR200

    Article  CAS  PubMed  Google Scholar 

  20. Alonso, M.A., Millan, J.: The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell Sci. 114(Pt 22), 3957–3965 (2001)

    CAS  PubMed  Google Scholar 

  21. Brown, D.A., London, E.: Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275(23), 17221–17224 (2000). https://doi.org/10.1074/jbc.R000005200

    Article  CAS  PubMed  Google Scholar 

  22. Brown, D.A., Rose, J.K.: Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 68(3), 533–544 (1992) doi:0092-8674(92)90189-J [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Cross, N.L.: Reorganization of lipid rafts during capacitation of human sperm. Biol. Reprod. 71(4), 1367–1373 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Shadan, S., James, P.S., Howes, E.A., Jones, R.: Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol. Reprod. 71(1), 253–265 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Sleight, S.B., Miranda, P.V., Plaskett, N.W., Maier, B., Lysiak, J., Scrable, H., Herr, J.C., Visconti, P.E.: Isolation and proteomic analysis of mouse sperm detergent-resistant membrane fractions: evidence for dissociation of lipid rafts during capacitation. Biol. Reprod. 73(4), 721–729 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Travis, A.J., Merdiushev, T., Vargas, L.A., Jones, B.H., Purdon, M.A., Nipper, R.W., Galatioto, J., Moss, S.B., Hunnicutt, G.R., Kopf, G.S.: Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa. Dev. Biol. 240(2), 599–610 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Miranda, P.V., Allaire, A., Sosnik, J., Visconti, P.E.: Localization of low-density detergent-resistant membrane proteins in intact and acrosome-reacted mouse sperm. Biol. Reprod. 80(5), 897–904 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. Kasekarn, W., Kanazawa, T., Hori, K., Tsuchiyama, T., Lian, X., Garenaux, E., Kongmanas, K., Tanphaichitr, N., Yasue, H., Sato, C., Kitajima, K.: Pig sperm membrane microdomains contain a highly glycosylated 15-25-kDa wheat germ agglutinin-binding protein. Biochem. Biophys. Res. Commun. 426(3), 356–362 (2012). https://doi.org/10.1016/j.bbrc.2012.08.090

    Article  CAS  PubMed  Google Scholar 

  29. de Laurentiis, A., Donovan, L., Arcaro, A.: Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochemistry Journal. 1, 12–32 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Botto, L., Bernabo, N., Palestini, P., Barboni, B.: Bicarbonate induces membrane reorganization and CBR1 and TRPV1 endocannabinoid receptor migration in lipid microdomains in capacitating boar spermatozoa. J. Membr. Biol. 238(1–3), 33–41 (2010). https://doi.org/10.1007/s00232-010-9316-8

    Article  CAS  PubMed  Google Scholar 

  31. Nixon, B., Mitchell, L.A., Anderson, A.L., McLaughlin, E.A., O'Bryan, M.K., Aitken, R.J.: Proteomic and functional analysis of human sperm detergent resistant membranes. J. Cell. Physiol. 226(10), 2651–2665 (2011). https://doi.org/10.1002/jcp.22615

    Article  CAS  PubMed  Google Scholar 

  32. Peterson, G.L.: A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83(2), 346–356 (1977)

    Article  CAS  PubMed  Google Scholar 

  33. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)

    Article  CAS  PubMed  Google Scholar 

  34. Vercoutter-Edouart, A.S., Slomianny, M.C., Dekeyzer-Beseme, O., Haeuw, J.F., Michalski, J.C.: Glycoproteomics and glycomics investigation of membrane N-glycosylproteins from human colon carcinoma cells. Proteomics. 8(16), 3236–3256 (2008). https://doi.org/10.1002/pmic.200800151

    Article  CAS  PubMed  Google Scholar 

  35. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671–675 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romero-Calvo, I., Ocon, B., Martinez-Moya, P., Suarez, M.D., Zarzuelo, A., Martinez-Augustin, O., de Medina, F.S.: Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal. Biochem. 401(2), 318–320 (2010). https://doi.org/10.1016/j.ab.2010.02.036

    Article  CAS  PubMed  Google Scholar 

  37. Gurcel, C., Vercoutter-Edouart, A.S., Fonbonne, C., Mortuaire, M., Salvador, A., Michalski, J.C., Lemoine, J.: Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Anal. Bioanal. Chem. 390(8), 2089–2097 (2008). https://doi.org/10.1007/s00216-008-1950-y

    Article  CAS  PubMed  Google Scholar 

  38. Boerke, A., van der Lit, J., Lolicato, F., Stout, T.A., Helms, J.B., Gadella, B.M.: Removal of GPI-anchored membrane proteins causes clustering of lipid microdomains in the apical head area of porcine sperm. Theriogenology. 81(4), 613–624 (2014). https://doi.org/10.1016/j.theriogenology.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  39. van Gestel, R.A., Brewis, I.A., Ashton, P.R., Helms, J.B., Brouwers, J.F., Gadella, B.M.: Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol. Hum. Reprod. 11(8), 583–590 (2005)

    Article  PubMed  Google Scholar 

  40. Selvaraj, V., Asano, A., Buttke, D.E., McElwee, J.L., Nelson, J.L., Wolff, C.A., Merdiushev, T., Fornes, M.W., Cohen, A.W., Lisanti, M.P., Rothblat, G.H., Kopf, G.S., Travis, A.J.: Segregation of micron-scale membrane sub-domains in live murine sperm. J. Cell. Physiol. 206(3), 636–646 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. Selvaraj, V., Buttke, D.E., Asano, A., McElwee, J.L., Wolff, C.A., Nelson, J.L., Klaus, A.V., Hunnicutt, G.R., Travis, A.J.: GM1 dynamics as a marker for membrane changes associated with the process of capacitation in murine and bovine spermatozoa. J. Androl. 28(4), 588–599 (2007). https://doi.org/10.2164/jandrol.106.002279

    Article  CAS  PubMed  Google Scholar 

  42. Nixon, B., Aitken, R.J.: The biological significance of detergent-resistant membranes in spermatozoa. J. Reprod. Immunol. 83(1–2), 8–13 (2009)

    Article  CAS  PubMed  Google Scholar 

  43. Asano, A., Selvaraj, V., Buttke, D.E., Nelson, J.L., Green, K.M., Evans, J.E., Travis, A.J.: Biochemical characterization of membrane fractions in murine sperm: identification of three distinct sub-types of membrane rafts. J. Cell. Physiol. 218(3), 537–548 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garofalo, T., Manganelli, V., Grasso, M., Mattei, V., Ferri, A., Misasi, R., Sorice, M.: Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis. 20(5), 621–634 (2015). https://doi.org/10.1007/s10495-015-1100-x

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe, H., Kondoh, G.: Mouse sperm undergo GPI-anchored protein release associated with lipid raft reorganization and acrosome reaction to acquire fertility. J. Cell Sci. 124(Pt 15), 2573–2581 (2011). https://doi.org/10.1242/jcs.086967

    Article  CAS  PubMed  Google Scholar 

  46. Asquith, K.L., Baleato, R.M., McLaughlin, E.A., Nixon, B., Aitken, R.J.: Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J. Cell Sci. 117(Pt 16), 3645–3657 (2004). https://doi.org/10.1242/jcs.01214

    Article  CAS  PubMed  Google Scholar 

  47. Kongmanas, K., Kruevaisayawan, H., Saewu, A., Sugeng, C., Fernandes, J., Souda, P., Angel, J.B., Faull, K.F., Aitken, R.J., Whitelegge, J., Hardy, D., Berger, T., Baker, M.A., Tanphaichitr, N.: Proteomic characterization of pig sperm anterior head plasma membrane reveals roles of Acrosomal proteins in ZP3 binding. J. Cell. Physiol. 230(2), 449–463 (2015). https://doi.org/10.1002/jcp.24728

    Article  CAS  PubMed  Google Scholar 

  48. Marchand, S., Devillers-Thiery, A., Pons, S., Changeux, J.P., Cartaud, J.: Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J. Neurosci. 22(20), 8891–8901 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Minogue, S., Waugh, M.G.: Lipid rafts, microdomain heterogeneity and inter-organelle contacts: impacts on membrane preparation for proteomic studies. Biol. Cell. 104(10), 618–627 (2012). https://doi.org/10.1111/boc.201200020

    Article  CAS  PubMed  Google Scholar 

  50. Wassarman, P.M., Litscher, E.S.: Towards the molecular basis of sperm and egg interaction during mammalian fertilization. Cells Tissues Organs. 168(1–2), 36–45 (2001)

    Article  CAS  PubMed  Google Scholar 

  51. Ducolomb, Y., Gonzalez-Marquez, H., Fierro, R., Jimenez, I., Casas, E., Flores, D., Bonilla, E., Salazar, Z., Betancourt, M.: Effect of porcine follicular fluid proteins and peptides on oocyte maturation and their subsequent effect on in vitro fertilization. Theriogenology. 79(6), 896–904 (2013). https://doi.org/10.1016/j.theriogenology.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  52. Day, A.E., Quilter, C.R., Sargent, C.A., Mileham, A.J.: Characterization of the porcine sperm adhesion molecule gene SPAM1- expression analysis, genomic structure, and chromosomal mapping. Anim. Genet. 33(3), 211–214 (2002)

    Article  CAS  PubMed  Google Scholar 

  53. Green, C.E., Bredl, J., Holt, W.V., Watson, P.F., Fazeli, A.: Carbohydrate mediation of boar sperm binding to oviductal epithelial cells in vitro. Reproduction. 122(2), 305–315 (2001)

    Article  CAS  PubMed  Google Scholar 

  54. Amari, S., Yonezawa, N., Mitsui, S., Katsumata, T., Hamano, S., Kuwayama, M., Hashimoto, Y., Suzuki, A., Takeda, Y., Nakano, M.: Essential role of the nonreducing terminal alpha-mannosyl residues of the N-linked carbohydrate chain of bovine zona pellucida glycoproteins in sperm-egg binding. Mol. Reprod. Dev. 59(2), 221–226 (2001). https://doi.org/10.1002/mrd.1026

    Article  CAS  PubMed  Google Scholar 

  55. Nixon, B., Lu, Q., Wassler, M.J., Foote, C.I., Ensslin, M.A., Shur, B.D.: Galactosyltransferase function during mammalian fertilization. Cells Tissues Organs. 168(1–2), 46–57 (2001)

    Article  CAS  PubMed  Google Scholar 

  56. Esteves, S.C., Sharma, R.K., Thomas Jr., A.J., Agarwal, A.: Evaluation of acrosomal status and sperm viability in fresh and cryopreserved specimens by the use of fluorescent peanut agglutinin lectin in conjunction with hypo-osmotic swelling test. Int. Braz. J. Urol. 33(3), 364–374 (2007)

    Article  PubMed  Google Scholar 

  57. Aleksinskaya, M.A., Nikolaeva, M.A., Danilov, S.M., Elistratova, O.S., Sukhikh, G.T.: Quantitative study of testicular angiotensin-converting enzyme on the surface of human spermatozoa. Bull. Exp. Biol. Med. 141(1), 36–39 (2006)

    Article  CAS  PubMed  Google Scholar 

  58. Hagaman, J.R., Moyer, J.S., Bachman, E.S., Sibony, M., Magyar, P.L., Welch, J.E., Smithies, O., Krege, J.H., O'Brien, D.A.: Angiotensin-converting enzyme and male fertility. Proc. Natl. Acad. Sci. 95(5), 2552–2557 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu, X.C., Sturrock, E.D., Wu, Z., Biemann, K., Ehlers, M.R., Riordan, J.F.: Identification of N-linked glycosylation sites in human testis angiotensin-converting enzyme and expression of an active deglycosylated form. J. Biol. Chem. 272(6), 3511–3519 (1997)

    Article  CAS  PubMed  Google Scholar 

  60. Lassalle, B., Testart, J.: Human zona pellucida recognition associated with removal of sialic acid from human sperm surface. J. Reprod. Fertil. 101(3), 703–711 (1994)

    Article  CAS  PubMed  Google Scholar 

  61. Froman, D.P., Engel Jr., H.N.: Alteration of the spermatozoal glycocalyx and its effect on duration of fertility in the fowl (Gallus domesticus). Biol. Reprod. 40(3), 615–621 (1989)

    Article  CAS  PubMed  Google Scholar 

  62. Topfer-Petersen, E., Romero, A., Varela, P.F., Ekhlasi-Hundrieser, M., Dostalova, Z., Sanz, L., Calvete, J.J.: Spermadhesins: a new protein family. Facts, hypotheses and perspectives. Andrologia. 30(4–5), 217–224 (1998)

    CAS  PubMed  Google Scholar 

  63. Ekhlasi-Hundrieser, M., Gohr, K., Wagner, A., Tsolova, M., Petrunkina, A., Topfer-Petersen, E.: Spermadhesin AQN1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig. Biol. Reprod. 73(3), 536–545 (2005). https://doi.org/10.1095/biolreprod.105.040824

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez-Martinez, H., Saravia, F., Wallgren, M., Martinez, E.A., Sanz, L., Roca, J., Vazquez, J.M., Calvete, J.J.: Spermadhesin PSP-I/PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow. J. Reprod. Immunol. 84(1), 57–65 (2010). https://doi.org/10.1016/j.jri.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  65. Nixon, B., Asquith, K.L., John Aitken, R.: The role of molecular chaperones in mouse sperm-egg interactions. Mol. Cell. Endocrinol. 240(1–2), 1–10 (2005). https://doi.org/10.1016/j.mce.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  66. Reid, A.T., Redgrove, K., Aitken, R.J., Nixon, B.: Cellular mechanisms regulating sperm-zona pellucida interaction. Asian Journal of Andrology. 13(1), 88–96 (2011). https://doi.org/10.1038/aja.2010.74

    Article  CAS  PubMed  Google Scholar 

Download references

List of abbreviations

AR: acrosome reaction; C: capacitated; DIG: digoxigenin; DRM: detergent-resistant membrane; DSA: Datura stramonium agglutinin; Gal: galactose; GlcNAc: N-acetylglucosamine; GM1: ganglioside M1; GNA: Galanthus nivalis agglutinin; Man: mannose; NC: non-capacitated; NeuAc: sialic acid; OD: optical density; PNA: peanut agglutinin; RP: raft proteins; RPC: raft protein of C; RPNC: raft protein of NC; SNA: Sambucus nigra agglutinin; TPC: total protein of capacitated spermatozoa; TPNC: total protein of non-capacitated spermatozoa; WGA: wheat germ agglutinin; ZP: zona pellucida.

Acknowledgments

We thank Yobana Pérez-Cervera, Ludivine Drougat, Ikram El Yazidi Belkoura and Marlène Mortuaire for technical assistance.

Funding

This work was partially supported by CONACYT, México (grant number 105961-M), scholarship to JBLS (number 233535), Bilateral Cooperation Projects Mexico-France CONACYT-ANUIES-ECOS (grant number M10-A02). The Proteomics facility is funded by the European Community (FEDER), the “Région Nord-Pas de Calais”, the IBISA network, the CNRS, and the University of Lille-Faculté des Sciences et Technologies.

Author information

Authors and Affiliations

Authors

Contributions

Direction of the study and established the experimental design: RF, IJM, HGM, ASVE, TL, JCM. Performed the experiments: JBLS, OMP, SFB. All authors analyzed the results, contributed to the finalized manuscript and approved the manuscript.

Corresponding author

Correspondence to Reyna Fierro.

Ethics declarations

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publications

Not applicable.

Competing of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Salguero, J.B., Fierro, R., Michalski, JC. et al. Identification of lipid raft glycoproteins obtained from boar spermatozoa. Glycoconj J 37, 499–509 (2020). https://doi.org/10.1007/s10719-020-09924-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09924-0

Keywords

Navigation