Skip to main content

Advertisement

Log in

Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions

  • Mini Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Expression profiles of glycosphingolipids (GSLs) in human embryonic stem cell (hESC) lines and their differentiated embryoid body (EB) outgrowth cells, consisting of three germ layers, were surveyed systematically. Several globo- and lacto-series GSLs were identified in undifferentiated hESCs and during differentiation of hESCs to EB outgrowth cells, and core structure switching of these GSLs to gangliosides was observed. Such switching was attributable to altered expression of key glycosyltransferases (GTs) in GSL biosynthetic pathways, reflecting the unique stage-specific transitions and mechanisms characteristic of the differentiation process. Lineage-specific differentiation of hESCs was associated with further GSL alterations. During differentiation of undifferentiated hESCs to neural progenitor cells, core structure switching from globo- and lacto-series to primarily gangliosides (particularly GD3) was again observed. During differentiation to endodermal cells, alterations of GSL profiles were distinct from those in differentiation to EB outgrowth or neural progenitor cells, with high expression of Gb4Cer and low expression of stage-specific embryonic antigen (SSEA)-3, -4, or GD3 in endodermal cells. Again, such profile changes resulted from alterations of key GTs in GSL biosynthetic pathways. Novel glycan structures identified on hESCs and their differentiated counterparts presumably play functional roles in hESCs and related cancer or cancer stem cells, and will be useful as surface biomarkers. We also examined GSL expression profiles in breast cancer stem cells (CSCs), using a model of epithelial-mesenchymal transition (EMT)-induced human breast CSCs. We found that GD2 and GD3, together with their common upstream GTs, GD3 synthase (GD3S) and GD2/GM2 synthase, maintained stem cell phenotype in breast CSCs. Subsequent studies showed that GD3 was associated with epidermal growth factor receptor (EGFR), and activated EGFR signaling in breast CSCs and breast cancer cell lines. GD3S knockdown enhanced cytotoxicity of gefitinib (an EGFR kinase inhibitor) in resistant MDA-MB468 cells, both in vitro and in vivo. Our findings indicate that GD3S contributes to gefitinib resistance in EGFR-positive breast cancer cells, and is a potentially useful therapeutic target in drug-resistant breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Fig. 2 in Ref. [29] and Fig. 3 in ref. [30]

Fig. 2

Adapted from Fig. 1 in Ref. [67]

Fig. 3

Adapted from Fig. 4 & 5 in Ref. [68]

Fig. 4

Adapted from Fig. 7 & 8 in Ref. [68]

Similar content being viewed by others

References

  1. Chester, M.A.: IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids--recommendations 1997. Eur J Biochem. 257, 293–8 (1998)

  2. Hakomori, S., Ishizuka, I.: Glycolipids: animal. Encyclopedia of Life Sciences. (2006)

  3. Hakomori, S.: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta. 1780, 325–346 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Hakomori, S.: Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett. 584, 1901–1906 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Yu, R.K.: Development regulation of ganglioside metabolism. Prog Brain Res. 101, 31–44 (1994)

    Article  CAS  PubMed  Google Scholar 

  6. Yu, R.K., Macala, L.J., Taki, T., Weinfield, H.M., Yu, F.S.: Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem. 50, 1825–1829 (1988)

    Article  CAS  PubMed  Google Scholar 

  7. Bouvier, J.D., Seyfried, T.N.: Ganglioside composition of normal and mutant mouse embryos. J Neurochem. 52, 460–466 (1989)

    Article  CAS  PubMed  Google Scholar 

  8. Ngamukote, S., Yanagisawa, M., Ariga, T., Ando, S., Yu, R.K.: Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem. 103, 2327–2341 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., et al.: Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., Bongso, A.: Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 18, 399–404 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Handa, K., Hakomori, S.I.: Changes of glycoconjugate expression profiles during early development. Glycoconj J. 34, 693–699 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. Kerr, M.A., Stocks, S.C.: The role of CD15-(Le(X))-related carbohydrates in neutrophil adhesion. Histochem J. 24, 811–826 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. Jungalwala, F.B.: Expression and biological functions of sulfoglucuronyl glycolipids (SGGLs) in the nervous system–a review. Neurochem Res. 19, 945–957 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. Prinetti, A., Loberto, N., Chigorno, V., Sonnino, S.: Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta. 1788, 184–193 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Sonnino, S., Prinetti, A.: Sphingolipids and membrane environments for caveolin. FEBS Lett. 583, 597–606 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Kimber, S.J., Brown, D.G., Pahlsson, P., Nilsson, B.: Carbohydrate antigen expression in murine embryonic stem cells and embryos. II. Sialylated antigens and glycolipid analysis. Histochem J. 25, 628–41 (1993)

  17. Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K., et al.: A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A. 96, 9142–9147 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwak, D.H., Yu, K., Kim, S.M., Lee, D.H., Kim, S.M., Jung, J.U., et al.: Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp Mol Med. 38, 668–676 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Lee, D.H., Koo, D.B., Ko, K., Ko, K., Kim, S.M., Jung, J.U., et al.: Effects of daunorubicin on ganglioside expression and neuronal differentiation of mouse embryonic stem cells. Biochem Biophys Res Commun. 362, 313–318 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. Jung, J.U., Ko, K., Lee, D.H., Ko, K., Chang, K.T., Choo, Y.K.: The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med. 41, 935–945 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pera, M.F., Reubinoff, B., Trounson, A.: Human embryonic stem cells. J Cell Sci. 113, 5–10 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Hanna, J., Cheng, A.W., Saha, K., Kim, J., Lengner, C.J., Soldner, F., et al.: Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A. 107, 9222–9227 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., et al.: New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Fenderson, B.A., Andrews, P.W., Nudelman, E., Clausen, H., Hakomori, S.: Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev Biol. 122, 21–34 (1987)

    Article  CAS  PubMed  Google Scholar 

  25. Draper, J.S., Pigott, C., Thomson, J.A., Andrews, P.W.: Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 200, 249–258 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, J., Thomson, J.A.: Pluripotent stem cell lines. Genes Dev. 22, 1987–1997 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kannagi, R., Cochran, N.A., Ishigami, F., Hakomori, S., Andrews, P.W., Knowles, B.B., et al.: Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. Embo J. 2, 2355–2361 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kannagi, R., Levery, S.B., Ishigami, F., Hakomori, S., Shevinsky, L.H., Knowles, B.B., et al.: New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J Biol Chem. 258, 8934–8942 (1983)

    Article  CAS  PubMed  Google Scholar 

  29. Liang, Y.J., Kuo, H.H., Lin, C.H., Chen, Y.Y., Yang, B.C., Cheng, Y.Y., et al.: Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc Natl Acad Sci U S A. 107, 22564–22569 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liang, Y.J., Yang, B.C., Chen, J.M., Lin, Y.H., Huang, C.L., Cheng, Y.Y., et al.: Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages. Stem Cells. 29, 1995–2004 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. Handa, K., Hakomori, S.: Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J. 29, 627–637 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Hakomori, S., Murakami, W.T.: Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc Natl Acad Sci U S A. 59, 254–261 (1968)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mora, P.T., Brady, R.O., Bradley, R.M., McFarland, V.W.: Gangliosides in DNA virus-transformed and spontaneously transformed tumorigenic mouse cell lines. Proc Natl Acad Sci U S A. 63, 1290–1296 (1969)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miljan, E.A., Bremer, E.G.: Regulation of growth factor receptors by gangliosides. Science's STKE : signal transduction knowledge environment. 2002, re15 (2002)

  35. Miljan, E.A., Meuillet, E.J., Mania-Farnell, B., George, D., Yamamoto, H., Simon, H.G., et al.: Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J Biol Chem. 277, 10108–10113 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. Thiery, J.P., Acloque, H., Huang, R.Y., Nieto, M.A.: Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. Hay, E.D.: The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 233, 706–720 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. Turley, E.A., Veiseh, M., Radisky, D.C., Bissell, M.J.: Mechanisms of disease: epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic progression? Nat. Clin. Pract. Oncol. 5, 280–290 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kalluri, R., Weinberg, R.A.: The basics of epithelial-mesenchymal transition. J Clin Invest. 119, 1420–1428 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guan, F., Schaffer, L., Handa, K., Hakomori, S.: Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-beta. Faseb J. 24, 4889–4903 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Guan, F., Handa, K., Hakomori, S.: Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci U S A. 106, 7461–7466 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, S.J., Chung, T.W., Choi, H.J., Kwak, C.H., Song, K.H., Suh, S.J., et al.: Ganglioside GM3 participates in the TGF-beta1-induced epithelial-mesenchymal transition of human lens epithelial cells. Biochem. J. 449, 241–251 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen, L.V., Vanner, R., Dirks, P., Eaves, C.J.: Cancer stem cells: an evolving concept. Nat. Rev. Cancer 12, 133–143 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. Bonnet, D., Dick, J.E.: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997)

    Article  CAS  PubMed  Google Scholar 

  45. Uchida, N., Buck, D.W., He, D., Reitsma, M.J., Masek, M., Phan, T.V., et al.: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 97, 14720–14725 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dalerba, P., Dylla, S.J., Park, I.K., Liu, R., Wang, X., Cho, R.W., et al.: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 104, 10158–10163 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F.: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 100, 3983–3988 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Terris, B., Cavard, C., Perret, C.: EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J. Hepatol. 52, 280–281 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. Dean, M., Fojo, T., Bates, S.: Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275–284 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. Creighton, C.J., Li, X., Landis, M., Dixon, J.M., Neumeister, V.M., Sjolund, A., et al.: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 106, 13820–13825 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., et al.: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 100, 672–679 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. Phillips, T.M., McBride, W.H., Pajonk, F.: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 98, 1777–1785 (2006)

    Article  PubMed  Google Scholar 

  53. Zhang, M., Atkinson, R.L., Rosen, J.M.: Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A. 107, 3522–3527 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., et al.: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005)

    Article  CAS  PubMed  Google Scholar 

  55. Sheridan, C., Kishimoto, H., Fuchs, R.K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C.H., et al.: CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 8, R59 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nieto, M.A.: Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. Int. J. Dev. Biol. 53, 1541–1547 (2009)

    Article  PubMed  Google Scholar 

  57. Acloque, H., Adams, M.S., Fishwick, K., Bronner-Fraser, M., Nieto, M.A.: Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 119, 1438–1449 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morel, AP., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., Puisieux, A.: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PloS one. 3, e2888 (2008)

  60. Ricardo, S., Vieira, A.F., Gerhard, R., Leitao, D., Pinto, R., Cameselle-Teijeiro, J.F., et al.: Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 64, 937–946 (2011)

    Article  PubMed  Google Scholar 

  61. Johnston, M.D., Maini, P.K., Jonathan Chapman, S., Edwards, C.M., Bodmer, W.F.: On the proportion of cancer stem cells in a tumour. J. Theor. Biol. 266, 708–711 (2010)

    Article  PubMed  Google Scholar 

  62. Yeung, T.M., Gandhi, S.C., Wilding, J.L., Muschel, R., Bodmer, W.F.: Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci U S A. 107, 3722–3727 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994)

    Article  CAS  PubMed  Google Scholar 

  64. Dick, J.E.: Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 100, 3547–3549 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elenbaas, B., Spirio, L., Koerner, F., Fleming, M.D., Zimonjic, D.B., Donaher, J.L., et al.: Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Battula, V.L., Evans, K.W., Hollier, B.G., Shi, Y., Marini, F.C., Ayyanan, A., et al.: Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells. 28, 1435–1445 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liang, Y.J., Ding, Y., Levery, S.B., Lobaton, M., Handa, K., Hakomori, S.: Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci U S A. 110, 4968–73 (2013)

  68. Liang, Y.J., Wang, C.Y., Wang, I.A., Chen, Y.W., Li, L.T., Lin, C.Y., et al.: Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget 8, 47454–47473 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bremer, E.G., Levery, S.B., Sonnino, S., Ghidoni, R., Canevari, S., Kannagi, R., et al.: Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr 1 expressed in normal and neoplastic epithelial cells of human mammary gland. J Biol Chem. 259, 14773–14777 (1984)

    Article  CAS  PubMed  Google Scholar 

  70. Canevari, S., Fossati, G., Balsari, A., Sonnino, S., Colnaghi, M.I.: Immunochemical analysis of the determinant recognized by a monoclonal antibody (MBr 1) which specifically binds to human mammary epithelial cells. Cancer Res. 43, 1301–1305 (1983)

    CAS  PubMed  Google Scholar 

  71. Angstrom, J., Teneberg, S., Karlsson, K.A.: Delineation and comparison of ganglioside-binding epitopes for the toxins of Vibrio cholerae, Escherichia coli, and Clostridium tetani: evidence for overlapping epitopes. Proc Natl Acad Sci U S A. 91, 11859–11863 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lauer, S., Goldstein, B., Nolan, R.L., Nolan, J.P.: Analysis of cholera toxin-ganglioside interactions by flow cytometry. Biochemistry 41, 1742–1751 (2002)

    Article  CAS  PubMed  Google Scholar 

  73. Yanagisawa, M., Ariga, T., Yu, R.K.: Cholera toxin B subunit binding does not correlate with GM1 expression: a study using mouse embryonic neural precursor cells. Glycobiology 16, 19G-22G (2006)

    Article  CAS  PubMed  Google Scholar 

  74. Hakomori, S.: Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj J. 17, 143–151 (2000)

    Article  CAS  PubMed  Google Scholar 

  75. Chang, W.W., Lee, C.H., Lee, P., Lin, J., Hsu, C.W., Hung, J.T., et al.: Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A. 105, 11667–11672 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hakomori, S.: Antigen structure and genetic basis of histo-blood groups A, B and O: their changes associated with human cancer. Biochim Biophys Acta. 1473, 247–266 (1999)

    Article  CAS  PubMed  Google Scholar 

  77. Huang, Y.L., Hung, J.T., Cheung, S.K., Lee, H.Y., Chu, K.C., Li, S.T., et al.: Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci U S A. 110, 2517–2522 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gupta, V., Bhinge, K.N., Hosain, S.B., Xiong, K., Gu, X., Shi, R., et al.: Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J Biol Chem. 287, 37195–37205 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A., et al.: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 40, 499–507 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prinetti, A., Aureli, M., Illuzzi, G., Prioni, S., Nocco, V., Scandroglio, F., et al.: GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 20, 62–77 (2009)

    Article  PubMed  Google Scholar 

  81. Ono, M., Handa, K., Sonnino, S., Withers, D.A., Nagai, H., Hakomori, S.: GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochemistry 40, 6414–6421 (2001)

    Article  CAS  PubMed  Google Scholar 

  82. Kawakami, Y., Kawakami, K., Steelant, W.F., Ono, M., Baek, R.C., Handa, K., et al.: Tetraspanin CD9 is a “proteolipid,” and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J Biol Chem. 277, 34349–34358 (2002)

    Article  CAS  PubMed  Google Scholar 

  83. Mitsuzuka, K., Handa, K., Satoh, M., Arai, Y., Hakomori, S.: A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem. 280, 35545–35553 (2005)

    Article  CAS  PubMed  Google Scholar 

  84. Toledo, M.S., Suzuki, E., Handa, K., Hakomori, S.: Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J Biol Chem. 280, 16227–16234 (2005)

    Article  CAS  PubMed  Google Scholar 

  85. Todeschini, A.R., Dos Santos, J.N., Handa, K., Hakomori, S.: Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem. 282, 8123–8133 (2007)

    Article  CAS  PubMed  Google Scholar 

  86. Saito, T., Hakomori, S.I.: Quantitative isolation of total glycosphingolipids from animal cells. J Lipid Res. 12, 257–259 (1971)

    Article  CAS  PubMed  Google Scholar 

  87. Dontu, G., Abdallah, W.M., Foley, J.M., Jackson, K.W., Clarke, M.F., Kawamura, M.J., et al.: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., et al.: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69, 1302–1313 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamaji, T., Nishikawa, K., Hanada, K.: Transmembrane BAX inhibitor motif containing (TMBIM) family proteins perturbs a trans-Golgi network enzyme, Gb3 synthase, and reduces Gb3 biosynthesis. J Biol Chem. 285, 35505–35518 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Battula, V.L., Shi, Y., Evans, K.W., Wang, R.Y., Spaeth, E.L., Jacamo, R.O., et al.: Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest. 122, 2066–2078 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Webb, T.J., Li, X., Giuntoli, R.L., 2nd., Lopez, P.H., Heuser, C., Schnaar, R.L., et al.: Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res. 72, 3744–3752 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Becker, R., Eichler, M.K., Jennemann, R., Bertalanffy, H.: Phase I clinical trial on adjuvant active immunotherapy of human gliomas with GD2-conjugate. Br. J. Neurosurg. 16, 269–275 (2002)

    Article  CAS  PubMed  Google Scholar 

  93. Shibuya, H., Hamamura, K., Hotta, H., Matsumoto, Y., Nishida, Y., Hattori, H., et al.: Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci. 103, 1656–1664 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hakomori, S.: Structure and function of sphingoglycolipids in transmembrane signalling and cell-cell interactions. Biochem Soc Trans. 21, 583–595 (1993)

    Article  CAS  PubMed  Google Scholar 

  95. Hakomori, S.: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309–5318 (1996)

    CAS  PubMed  Google Scholar 

  96. Masamune, H., Yosizawa, Z., Oh-Uti, K., Matsuda, Y., Masukawa, A.: Biochemical studies on carbohydrates: CLVI. On sugar components of hexosamine-containing carbohydrates from gastric cancer, normal human gastric mucosa, and human liver, and of glacial acetic acid-soluble proteins from those tissues, as well as liver metastasis from gastric cancer. Tohoku J Exp Med. 56, 37–42 (1952)

  97. Dahr, W., Uhlenbruck, G., Bird, G.W.G.: Cryptic A-like receptor sites in human erythrocyte glycoproteins: Proposed nature of Tn-antigen. Vox Sang. 27, 29–42 (1974)

    Article  CAS  PubMed  Google Scholar 

  98. Hirohashi, S., Clausen, H., Yamada, T., Shimosato, Y., Hakomori, S.: Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and -81 expressed in cancer of blood group O or B individuals: Its identification as Tn antigen. Proc Natl Acad Sci USA 82, 7039–7043 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kjeldsen, T.B., Clausen, H., Hirohashi, S., Ogawa, T., Iijima, H., Hakomori, S.: Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked associated O-linked sialosyl-2-6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res. 48, 2214–2220 (1988)

    CAS  PubMed  Google Scholar 

  100. Watanabe, M., Ohishi, T., Kuzuoka, M., Nudelman, E.D., Stroud, M.R., Kubota, T., et al.: In vitro and in vivo antitumor effects of murine monoclonal antibody NCC-ST-421 reacting with dimeric Lea (Lea/Lea) epitope. Cancer Res. 51, 2199–2204 (1991)

    CAS  PubMed  Google Scholar 

  101. Ito, H., Tashiro, K., Stroud, M.R., Ørntoft, T.F., Meldgaard, P., Singhal, A.K., et al.: Specificity and immunobiological properties of monoclonal antibody IMH2, established after immunization with Leb/Lea glycosphingolipid, a novel extended type 1 chain antigen. Cancer Res. 52, 3739–3745 (1992)

    CAS  PubMed  Google Scholar 

  102. Stroud, M.R., Levery, S.B., Salyan, M.E.K., Roberts, C.E., Hakomori, S.: Extended type-1 chain glycosphingolipid antigens: Isolation and characterization of trifucosyl-Leb antigen (III4V4VI2Fuc3Lc6). Eur J Biochem. 203, 577–586 (1992)

    Article  CAS  PubMed  Google Scholar 

  103. Birkle, S., Zeng, G., Gao, L., Yu, R.K., Aubry, J.: Role of tumor-associated gangliosides in cancer progression. Biochimie 85, 455–463 (2003)

    Article  CAS  PubMed  Google Scholar 

  104. Yu, R.K., Nakatani, Y., Yanagisawa, M.: The role of glycosphingolipid metabolism in the developing brain. J Lipid Res. 50(Suppl), S440–S445 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yamashiro, S., Okada, M., Haraguchi, M., Furukawa, K., Lloyd, K.O., Shiku, H.: Expression of alpha 2,8-sialyltransferase (GD3 synthase) gene in human cancer cell lines: high level expression in melanomas and up-regulation in activated T lymphocytes. Glycoconj J. 12, 894–900 (1995)

    Article  CAS  PubMed  Google Scholar 

  106. Nishio, M., Furukawa, K.: Incorporation, remodeling and re-expression of exogenous gangliosides in human cancer cell lines in vitro and in vivo. Nagoya J. Med. Sci. 67, 35–44 (2004)

    CAS  PubMed  Google Scholar 

  107. Groux-Degroote, S., Guerardel, Y., Julien, S., Delannoy, P.: Gangliosides in breast cancer: new perspectives. Biochemistry Biokhimiia. 80, 808–819 (2015)

    Article  CAS  PubMed  Google Scholar 

  108. Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., et al.: Molecular portraits of human breast tumours. Nature 406, 747–752 (2000)

    Article  CAS  PubMed  Google Scholar 

  109. Parker, J.S., Mullins, M., Cheang, M.C., Leung, S., Voduc, D., Vickery, T., et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 27, 1160–1167 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  110. Charafe-Jauffret, E., Ginestier, C., Monville, F., Finetti, P., Adelaide, J., Cervera, N., et al.: Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25, 2273–2284 (2006)

    Article  CAS  PubMed  Google Scholar 

  111. Kao, J., Salari, K., Bocanegra, M., Choi, Y.L., Girard, L., Gandhi, J., et al.: Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PloS one. 4, e6146 (2009)

  112. Prat, A., Perou, C.M.: Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 5, 5–23 (2011)

    Article  CAS  PubMed  Google Scholar 

  113. Chavez, K.J., Garimella, S.V., Lipkowitz, S.: Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 32, 35–48 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  114. Prat, A., Parker, J.S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J.I., et al.: Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  115. Miljan, E.A., Bremer, E.G.: Regulation of growth factor receptors by gangliosides. Science’s STKE : signal transduction knowledge environment. 2002, 1–10 (2002)

    Article  Google Scholar 

  116. Sarkar, T.R., Battula, V.L., Werden, S.J., Vijay, G.V., Ramirez-Pena, E.Q., Taube, J.H., et al.: GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 34, 2958–2967 (2015)

    Article  CAS  PubMed  Google Scholar 

  117. Ruckhaberle, E., Rody, A., Engels, K., Gaetje, R., von Minckwitz, G., Schiffmann, S., et al.: Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res. Treat. 112, 41–52 (2008)

    Article  PubMed  Google Scholar 

  118. Ruckhaberle, E., Karn, T., Rody, A., Hanker, L., Gatje, R., Metzler, D., et al.: Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J. Cancer Res. Clin. Oncol. 135, 1005–1013 (2009)

    Article  PubMed  Google Scholar 

  119. Wang, J., Yu, R.K.: Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci U S A. 110, 19137–19142 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ohkawa, Y., Miyazaki, S., Hamamura, K., Kambe, M., Miyata, M., Tajima, O., et al.: Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J Biol Chem. 285, 27213–27223 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hamamura, K., Tsuji, M., Hotta, H., Ohkawa, Y., Takahashi, M., Shibuya, H., et al.: Functional activation of Src family kinase yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J Biol Chem. 286, 18526–18537 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cazet, A., Lefebvre, J., Adriaenssens, E., Julien, S., Bobowski, M., Grigoriadis, A., et al.: GD(3) synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Molecular cancer research : MCR. 8, 1526–1535 (2010)

    Article  CAS  PubMed  Google Scholar 

  123. Cazet, A., Bobowski, M., Rombouts, Y., Lefebvre, J., Steenackers, A., Popa, I., et al.: The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology 22, 806–816 (2012)

    Article  CAS  PubMed  Google Scholar 

  124. Herbst, R.S., Giaccone, G., Schiller, J.H., Natale, R.B., Miller, V., Manegold, C., et al.: Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 2. J Clin Oncol. 22, 785–794 (2004)

    Article  CAS  PubMed  Google Scholar 

  125. Baselga, J., Albanell, J., Ruiz, A., Lluch, A., Gascon, P., Guillem, V., et al.: Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol. 23, 5323–5333 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by grants from Ministry of Science and Technology (MOST 104-2314-B-182A-048 -MY3; 110-2314-B-075-010-MY3), Taiwan, R.O.C., VGHUST Joint Research Program, Tsou Foundation (VGHUST110-G7-3-3) and from VGHTPE Research Program (V107C-161, V108C-059 and V109C-049). The authors are grateful to all previous coworkers for their contributions, and to Dr. S. Anderson for English editing of the manuscript. Fig. 1 is modified from Proc Natl Acad Sci USA 2010 107: 22564-22569 and Stem Cells 2011 29: 1995-2004. Fig. 2 is reprinted from Proc Natl Acad Sci USA 2013 110: 4968-4973. Figs. 34 are modified from Oncotarget 2017 8(29): 47454- 47473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Jin Liang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tribute to Professor Sen-itiroh Hakomori

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YJ. Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj J 39, 177–195 (2022). https://doi.org/10.1007/s10719-021-10032-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-10032-w

Keywords

Navigation