Skip to main content
Log in

Current knowledge and breeding perspectives for the miracle plant Synsepalum dulcificum (Schum. et Thonn.) Daniell

  • Notes on Neglected and Underutilized Crops
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Synsepalum dulcificum, an African native shrub, is a valuable species. All plant parts are of medicinal importance whereas the fruit known as magic berry, miracle berry, or sweet berry is consumed fresh. Surprisingly, very little is known on the species in terms of genotypes utilization and breeding. In this review we recalled the uses and importance of the species and suggested research avenues for an accelerated growth and fruit production. Synsepalum dulcificum is rich in glycoprotein and is an excellent natural sweetener and also a good candidate for the synthesis of drugs against diabetes. Furthermore, S. dulcificum has high content in phytochemical substances (e.g. (+)-epi-syringaresinol, vanillic acid, cyanidin-3-monogalactoside, and quercetin-3-monogalactoside) with various health and food benefits. Data on the nutrient content are limited. Likewise, knowledge on the reproductive biology and mating system is still narrow, combined with poorly developed horticultural practices. To fully exploit the potential of S. dulcificum prospective actions include: (1) improving the propagation and growth abilities of the species, (2) improving knowledge of floral biology and genetic diversity, (3) understanding the phenological phases of the species, gene expressions and how this contributes to metabolites accumulation and (4) improving genotypes for beverages, cosmetics and pharmaceutical industries and other value chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrol DP (2012) Pollination-basic concepts. In: Abrol DP (ed) Pollination Biology. Springer, Berlin, pp 37–54

    Chapter  Google Scholar 

  • Adansi MA, Hollowey HLO (1977) Germination of seeds of the sweet or miraculous berry Synsepalum dulcificum Daniell. Acta Hortic 53:181–182

    Google Scholar 

  • Akoègninou A, Van der Burg WJ, Van der Maesen LJG (2006) Flore Analytique du Bénin. Backhuys Publishers, Wageningen

    Google Scholar 

  • Ayensu ES (1972) Morphology and anatomy of Synsepalum dulcificum (Sapotaceae). Bot J Linn Soc 65:179–187

    Article  Google Scholar 

  • Bartoshuk LM, Gentile RL, Moskowitz HR, Meiselman HL (1974) Sweet taste induced by miracle fruit (Synsepalum dulcificum). Physiol Behav 12:449–456

    Article  CAS  PubMed  Google Scholar 

  • Bleasdale JKA (1959) Studies on plant competition. Blackwell, Oxford

    Google Scholar 

  • Buckmire R, Francis F (1976) Anthocyanins and flavonols of miracle fruit, Synsepalum dulcificum Schum. J Food Sci 41:1363–1365

    Article  CAS  Google Scholar 

  • Buckmire RE, Francis FJ (1978) Pigments of miracle fruit, Synsepalum dulcificum Schum, as potential food colorants. J Food Sci 43:908–911

    Article  CAS  Google Scholar 

  • Burkill MH (2000) The useful plants of West Tropical Africa, vol 5. Families S-Z Cryptogams Addenda, Royal Botanical Gardens

    Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Candolle AD (1844) Sideroxylon dulcificum. Prodromus Syst Nut Veg 8:183

    Google Scholar 

  • Castiñeiras L, Guzmán FA, Duque MC, Shagarodsky T, Cristóbal R, De Vicente MC (2007) AFLPs and morphological diversity of Phaseolus lunatus L. in Cuban home gardens: approaches to recovering the lost ex situ collection. Biodivers Conserv 16:2847–2865

    Article  Google Scholar 

  • Caussanel JP (1989) Nuisibilité et seuils de nuisibilité des mauvaises herbes dans une culture annuelle: situation de concurrence bispécifique. Agronomie 9:219–240

    Article  Google Scholar 

  • Chen CC, Liu IM, Cheng JT (2006) Improvement of insulin resistance by miracle fruit (Synsepalum dulcificum) in fructose-rich chow-fed rats. Phytotherapy 20:987–992

    Article  Google Scholar 

  • Chen CY, Wang YD, Wang HM (2010) Chemical constituents from the roots of Synsepalum dulcificum. Chem Nat Comp 46:448–449

    Article  CAS  Google Scholar 

  • Chen XW, Abdullah TL, Abdullah NAP, Hassan SA (2012) Rooting response of miracle fruit (Synsepalum dulcificum) softwood cuttings as affected by indole butyric acid. Am J Agric Biol Sci 7:442–446

  • Cheng M-J, Hong Z-L, Chen CY (2012) Secondary metabolites from the stem of Synsepalum dulcificum. Chem Nat Comp 48:108

    Article  CAS  Google Scholar 

  • Du L, Shen Y, Zhang X, Prinyawiwatkul W, Xu Z (2014) Antioxidant-rich phytochemicals in miracle berry (Synsepalum dulcificum) and antioxidant activity of its extracts. Food Chem 153:279–284

    Article  CAS  PubMed  Google Scholar 

  • Dzendolet E (1969) Theory for the mechanism action of miracle fruits. Percept Psycophys 6:187–188

    Article  Google Scholar 

  • Edem CA, Dosunmu MI, Ebong AC, Jones M (2008) Determination of proximate composition of ascorbic acid and heavy metal content of star fruit (Averrhoa carambola). Glob J Pure Appl Sci 14:193–195

    CAS  Google Scholar 

  • Gaikwad KB, Singh N, Bhatia D, Kaur R, Bains NS, Bharaj TS, Singh K (2014) Yield-Enhancing Heterotic QTL Transferred from wild species to cultivated rice Oryza sativa L. PLoS One 9:e96939

    Article  PubMed Central  PubMed  Google Scholar 

  • Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19:3635–3654

    Article  Google Scholar 

  • Grüneberg W, Mwanga R, Andrade M, Espinoza J, Ceccarelli S, Guimarães E, Weltzien E (2009) Selection methods. Part 5: breeding clonally propagated crops. In: Ceccarelli S, Guimarães E, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, p 275

    Google Scholar 

  • Guney S, Nawar WW (1977) Seed lipids of the miracle fruit. J Food Biochem 1:173–184

    Article  CAS  Google Scholar 

  • Hanessian S, Girard C (1994) Facile access to 3-ulosonic acids via a SmI2-mediated reformatskii reaction on aldonolactones. Synlett 67:868

    Article  Google Scholar 

  • Hartmann HT, Kester DE, Davies FT, Geneve RL (1997) Propagation by specialized stems and roots, 6th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Henkin RI, Giroux EL (1974) Purification and some properties of miraculin, a glycoprotein from Synsepalum dulcificum which provokes sweetness and blocks sourness. J Agric Food Chem 22:595–601

    Article  PubMed  Google Scholar 

  • Houssou M (2014) Assessment of means and facilities for plant genetic resource management and development in West and Central Africa. Cooperating to make the best use of plant genetic resources in West and Central Africa: a regional imperative bioversity international, Rome, Italy and CORAF/WECARD, Dakar, Senegal: 59

  • Huang J-B, Liu H, Qi H-L, Lu S-L (2012) Anti-fatigue and immune function by nutritional constituents from Synsepalum dulcificum mixing fruit power [J]. Chin J Exp Tradit Med Formul 14:058

    Google Scholar 

  • IARC (1980) Sorne non-nutritive sweetening agents, vol 22. WHO, Lyon

    Google Scholar 

  • Idohou R, Assogbadjo AE, Fandohan B, Gouwakinnou GN, Kakai RLG, Sinsin B, Maxted N (2013) National inventory and prioritization of crop wild relatives: case study for Benin. Genet Resour Crop Evol 60:1337–1352

    Article  Google Scholar 

  • Inglett GE, May JF (1968) Tropical plants with unusual taste properties. Econ Bot 22:326–331

    Article  Google Scholar 

  • Inglett GE, Dowling B, Albrecht JJ, Hoglan FA (1965) Taste-modifying properties of miracle fruit (Synsepalum dulcificum). J Agric Food Chem 13:284–287

    Article  CAS  Google Scholar 

  • Jaenicke H, Beniest J (2002) Vegetative tree propagation in agroforestry training. Principle and references, ICRAF

    Google Scholar 

  • Jonkers H (1958) Accelerated flowering of strawberry seedlings. Euphytica 7:41–46

    CAS  Google Scholar 

  • Joyner G (2006) The miracle fruit. In: Scott P (ed) Quandong magazine of the west Australian nut and tree crop association. West Australian Nut and Tree Crop Association Subiaco, West Australia, p 15

    Google Scholar 

  • Juhé-Beaulaton D (1998) “Fèves”, “pois” et “grains” dans le golfe de Guinée : problèmes d’identification des plantes dans les sources historiques. In: Chastanet M (ed) Plantes et paysages d’Afrique, une histoire à explorer. Karthala, CRA, pp 45–68

    Google Scholar 

  • Kalinganire A, Weber J, Uwamariya A, Kone B (2008) Improving rural livelihoods through domestication of indigenous fruit trees in the parklands of the Sahel. In: Akinnifesi FK, Leakey RRB, Ajayi OC, Sileshi G, Tchoundjeu Z, Matakala P, Kwesiga FR (eds) Indigenous fruit trees in the tropics: domestication, utilization and commercialization. CAB International, Wallingford, pp 186–203

    Google Scholar 

  • Kelly BA, Hardy OJ, Bouvet J-M (2004) Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali. Mol Ecol 13:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Kurihara K, Beidler LM (1969) Mechanism of action of taste-modifying protein. Nature 222:1176–1179

    Article  CAS  PubMed  Google Scholar 

  • Leakey RRB, Akinnifesi FK (2008) Towards a domestication strategy for indigenous fruit trees in the tropics. In: Akinnifesi FK, Leakey RRB, Ajayi OC, Sileshi G, Tchoundjeu Z, Matakala P, Kwesiga FR (eds) Indigenous fruit trees in the tropics: domestication, utilization and commercialization. CAB International, Wallingford, pp 28–49

    Google Scholar 

  • Lim TK (2013) Synsepalum dulcificum. In: Lim TK (ed) Edible medicinal and non-medicinal plants. Springer, Berlin, pp 146–150

    Chapter  Google Scholar 

  • Longchamp H (1977) Nuisibilité des mauvaises herbes. Rev Phytoma 288:7–15

    Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Masson L (2014) Phenolic acids as natural antioxidants. In: Praksh D, Sharma G (eds) Phytochemicals of neutraceutical importance. CAB International, Wallingford, pp 196–207

    Chapter  Google Scholar 

  • Matsuyama T, Satoh M, Nakata R, Aoyama T, Inoue H (2009) Functional expression of miraculin, a taste-modifying protein in Escherichia coli. J Biochem 145:445–450

    Article  CAS  PubMed  Google Scholar 

  • Milhet Y, Costes C (1984) Some data on sweetener plants biology. Acta Hortic 144:77–84

    Google Scholar 

  • Mitchell R, Hanstad T (2004) Small homegarden plots and sustainable livelihoods for the poor. LSP Working paper. Food and agriculture organization of the United Nations, Rome

    Google Scholar 

  • Nkwocha C (2014) Proximate and composition analyses of Synsepalum dulcificum pulp. Sci Res J 2:71–74

    Google Scholar 

  • Ogunsola KE, Ilori CO (2008) In vitro propagation of miracle berry (Synsepalum dulcificum Daniell) through embryo and nodal cultures. Afr J Biotechnol 7:244–248

    Google Scholar 

  • Oumorou M, Dah-Dovonon J, Aboh BA, Hounsoukaka M, Sinsin B (2010) Contribution à la conservation de synsepalum dulcificum : régénération et importance socio-économique dans le département de l’ouémé (Bénin). Ann Sci Agron 14:101–120

    Google Scholar 

  • Pieniazek SA (1976) Natural sweeteners and effects on taste. Natürliche Süssungsmittel und Geschmacksbeeinflussung. Industrielle Obst-und Gemüseverwertung 61:229–231

  • Pintureau B (2006) Lutte biologique contre les organismes nuisibles à l’agriculture. INRA, France

    Google Scholar 

  • Ray PK (2002) Papaya. Narosa Publishing House, New Delhi

    Google Scholar 

  • Sanou H et al (2004) Vegetative propagation of Vitellaria paradoxa by grafting. Agrofor Syst 60:93–99

    Article  Google Scholar 

  • Schumacher HCF (1827) Blumea dulcificum. Danske Vid. Selsk, Beskrivelse af Guineiske planter

    Google Scholar 

  • Sharma G, Prakash D, Gupta C (2014) Phytochemicals of neutraceutical importance: do they defend against diseases? In: Prakash D, Sharma G (eds) Phytochemicals of nutraceutical importance. CAB International, Wallingford, pp 1–19

  • Simons A, Leakey R (2004) Tree domestication in tropical agroforestry. In: Nair PKR, Rao MR, Buck LE (eds) New vistas in agroforestry. Springer, Berlin, pp 167–181

    Chapter  Google Scholar 

  • Singh RL, Sharma S, Singh P (2014) Antioxidants: Their health benefits and plant sources. In: Prakash D, Sharma G (eds) Phytochemicals of neutraceutical importance. CAB International, Wallingford, pp 248–265

    Chapter  Google Scholar 

  • Stein AJ, Nestel P, Meenakshi J, Qaim M, Sachdev H, Bhutta ZA (2007) Plant breeding to control zinc deficiency in India: how cost-effective is biofortification? Pub Health Nutr 10:492–501

    Article  Google Scholar 

  • Swenson U, Richardson JE, Bartish IV (2008) Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 24:1006–1031

    Article  Google Scholar 

  • Tamaki M, Urasaki N, Nakamura I, Motomura K, Adaniya S (2011) Shortening the breeding cycle of papaya (Carica papaya L.) by culturing embryos treated with ethrel. Plant Cell Tiss Org 106:225–233

    Article  CAS  Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121:259–269

    Article  CAS  PubMed  Google Scholar 

  • Wang H-M et al (2011) Bioconstituents from stems of Synsepalum dulcificum Daniell (Sapotaceae) inhibit human melanoma proliferation, reduce mushroom tyrosinase activity and have antioxidant properties. J Taiwan Inst Chem Eng 42:204–211

    Article  CAS  Google Scholar 

  • Xu Z (2012) Analysis methods of phenolic acids. In: Xu Z, Howard LR (eds) Analysis of antioxidant-rich phytochemicals. Wiley, Iowa, pp 69–74

    Chapter  Google Scholar 

  • Yildirim Z, Ilk Y, Yildirim M (2014) The synergist effect of p-hydroxybenzoic acid and propyl-paraben on the antibacterial activity of enterocin KP. Turk J Agric Food Sci Technol 2:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch G. Achigan-Dako.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achigan-Dako, E.G., Tchokponhoué, D.A., N’Danikou, S. et al. Current knowledge and breeding perspectives for the miracle plant Synsepalum dulcificum (Schum. et Thonn.) Daniell. Genet Resour Crop Evol 62, 465–476 (2015). https://doi.org/10.1007/s10722-015-0225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0225-7

Keywords

Navigation