Skip to main content
Log in

Size matters: evolution of large drug-secreting resin glands in elite pharmaceutical strains of Cannabis sativa (marijuana)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Most tetrahydrocannabinol (THC) of Cannabis sativa is located in the resin heads of capitate-stalked glandular trichomes. We found that after harvest the resin heads shrink in diameter in exponential decay fashion under ambient room conditions, losing about 15 % in the first month, rising to 24 % over the first year, 32 % by 50 years, and 34 % after a century. An equation accounting for the asymptotic curve descriptive of the progression of shrinkage was determined [original gland head diameter in microns = observed diameter divided by (0.5255 + 0.4745 multiplied by time in days to the power −0.1185)], so that if the age of a specimen is known, the original diameter of the gland heads in the fresh state can be extrapolated. This equation was employed to compare gland head size in samples of different ages. A sample of high-THC medical marijuana strains marketed under license possessed resin head diameters averaging 129 μm, while a sample of low-THC industrial hemp cultivars possessed gland head diameters averaging 80 μm. The mean volume of the resin heads of the narcotic strains was more than four times larger than that of the industrial hemp strains. This is the first documented report of a consistent morphological separator of elite narcotic strains and non-narcotic plants. Most recognized strains of marijuana were bred clandestinely and illicitly during the last half century. The occurrence of large resin gland heads in a sample of officially marketed pharmaceutical strains is an obvious correlate of selection for higher quantity of resin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bouquet RJ (1950) Cannabis. Bull Narc 2(4):14–30

    Google Scholar 

  • Brickell CD, Alexander C, David JC et al (2009) International code of nomenclature for cultivated plants. Int Soc Hortic Sci, Leuven

  • Briosi G, Tognini F (1894) Anatomia della canapa. Parte prima: Organi sessuali. Atti Ist Bot Pavia Ser II 3:91–209

    Google Scholar 

  • Cascini F, Aiello C, Di Tanna G (2012) Increasing delta-9-tetrahydrocannabinol (Δ9-THC) content in herbal cannabis over time: systematic review and meta-analysis. Curr Drug Abuse Rev 5:32–40

    Article  PubMed  CAS  Google Scholar 

  • Clarke RC (1998) Hashish!. Red Eye Press, Los Angeles

    Google Scholar 

  • Clarke RC, Merlin MD (2013) Cannabis: evolution and ethnobotany. University of California Press, Los Angeles

    Google Scholar 

  • De Meijer EPM, Hammond KM, Sutton A (2009) The inheritance of chemical phenotype in Cannabis sativa L. (IV): cannabinoid-free plants. Euphytica 168:95–112

    Article  CAS  Google Scholar 

  • Duke SO, Canel C, Rimando AM, Tellez MR, Duke MV, Paul RN (2000) Current and potential exploitation of plant glandular trichome productivity. Adv Bot Res 31:121–151

    Article  CAS  Google Scholar 

  • Fairbairn JW, Liebmann JA, Rowan MG (1976) The stability of cannabis and its preparations on storage. J Pharm Pharmacol 28:1–7

    Article  PubMed  CAS  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in cannabis. Phytochem Rev 7:615–639

    Article  CAS  Google Scholar 

  • Furr M, Mahlerg PG (1981) Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod 44:153–159

    Article  Google Scholar 

  • Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acic cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. PNAS 109:12811–12816

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hammond CT, Mahlberg PG (1977) Morphogenesis of capitate glandular hairs of Cannabis sativa (Cannabaceae). Am J Bot 64:1023–1031

    Article  Google Scholar 

  • Hammond CT, Mahlberg PG (1978) Ultrastructural development of capitate glandular hairs of Cannabis sativa L. (Cannabaceae). Am J Bot 65:140–151

    Article  Google Scholar 

  • Harvey DJ (1990) Stability of cannabinoids in dried samples of cannabis dating from around 1896–1905. J Ethnopharmacol 28:117–128

    Article  PubMed  CAS  Google Scholar 

  • Health Canada (2013) Information for health care professionals. Cannabis (marihuana, marijuana) and the cannabinoids. http://www.hc-sc.gc.ca/dhp-mps/marihuana/med/infoprof-eng.php. Accessed 22 Sep 2014

  • Hillig K (2004a) A chemotaxonomic analysis of terpenoid variation in Cannabis. Biochem Syst Ecol 32:875–891

    Article  CAS  Google Scholar 

  • Hillig KW (2004b) A multivariate analysis of allozyme variation in 93 Cannabis accessions from the VIR germplasm collection. J Ind Hemp 9(2):5–22

    Article  CAS  Google Scholar 

  • Hillig KW (2005) Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Res Crop Evol 52(2):161–180

    Article  CAS  Google Scholar 

  • Hillig KW, Mahlberg PG (2004) A systematic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91:966–975

    Article  PubMed  CAS  Google Scholar 

  • Inc Mathworks (2014) MATLAB: R2014a. Mathworks Inc, Natick

    Google Scholar 

  • ISTA (2004) International rules for seed testing, 2004 edition, vol 2. International Seed Testing Association, Basserdorf

    Google Scholar 

  • Kim ES, Mahlberg PG (1995) Glandular cuticle formation in Cannabis (Cannabaceae). Am J Bot 82:1207–1214

    Article  Google Scholar 

  • Kim ES, Mahlberg PG (1997) Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae). Am J Bot 84:336–342

    Article  PubMed  CAS  Google Scholar 

  • Kim ES, Mahlberg PG (2003) Secretory vesicle formation in the secretory cavity of glandular trichomes of Cannabis sativa L. (Cannabaceae). Mol Cells 15:387–395

    PubMed  CAS  Google Scholar 

  • Kjær A, Grevsen K, Jensen M (2012) Effect of external stress on density and size of glandular trichomes in full-grown Artemisia annua, the source of anti-malarial artemisinin. AoB Plants. doi:10.1093/aobpla/pls018 (published online)

  • Krings M, Taylor TN, Kellogg DW (2002) Touch-sensitive glandular trichomes: a mode of defence against herbivorous arthropods in the Carboniferous. Evol Ecol Res 4:779–786

    Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defence. Quart Rev Biol 48:3–15

    Article  Google Scholar 

  • Lewis GS, Turner CE (1978) Constituents of Cannabis sativa L. XIII: stability of dosage form prepared by impregnating synthetic (−)-delta-9-trans-tetrahydrocannabinol on placebo Cannabis plant material. J Pharm Sci 67:876–878

  • Lindholst C (2010) Long term stability of cannabis resin and cannabis extracts. Aust J Forensic Sci 42:181–190

    Article  Google Scholar 

  • Mahlberg PG, Kim ES (1991) Cuticle development on glandular trichomes of Cannabis sativa (Cannabaceae). Am J Bot 78:1113–1122

    Article  Google Scholar 

  • Mahlberg PG, Kim ES (1992) Secretory vesicle formation in glandular trichomes of Cannabis sativa (Cannabaceae). Am J Bot 79:166–173

    Article  Google Scholar 

  • Mahlberg PG, Kim ES (2004) Accumulation of cannabinoids in glandular trichomes of Cannabis (Cannabaceae). J Ind Hemp 9(1):15–36

    Article  CAS  Google Scholar 

  • Mahlberg PG, Hammond CT, Turner JC, Hemphill JK (1984) Structure, development and composition of glandular trichomes of Cannabis sativa L. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 23–51

    Chapter  Google Scholar 

  • Narayanaswami K, Golani HC, Bami HL, Dau RD (1978) Stability of Cannabis sativa L. samples and their extracts, on prolonged storage in Delhi. Bull Narc 30(4):57–69

    PubMed  CAS  Google Scholar 

  • Rodriguez E, Healy PL, Mehta I (1984) Biology and chemistry of plant trichomes. Plenum Press, New York

    Book  Google Scholar 

  • Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582

    Article  PubMed  CAS  Google Scholar 

  • Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007) Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr Pharm Biotechnol 8:237–243

    Article  PubMed  CAS  Google Scholar 

  • Small E (1979) The species problem in Cannabis: science and semantics, vol 2. Corpus, Toronto

    Google Scholar 

  • Small E, Beckstead HD (1973) Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia 35:144–165

    Google Scholar 

  • Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25:405–435

    Article  Google Scholar 

  • Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE (2012) The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:353–365

    PubMed  CAS  Google Scholar 

  • Turner JC, Hemphill JK, Mahlberg PG (1980) Trichomes and cannabinoid content of developing leaves and bracts of Cannabis sativa L. (Cannabaceae). Am J Bot 67:1397–1406

    Article  CAS  Google Scholar 

  • Turner JC, Hemphill JK, Mahlberg PG (1981a) Interrelationships of glandular trichomes and cannabinoid content. I. Developing pistillate bracts of Cannabis sativa L. (Cannabaceae). Bull Narc 33(2):59–69

    PubMed  CAS  Google Scholar 

  • Turner JC, Hemphill JK, Mahlberg PG (1981b) Interrelationships of glandular trichomes and cannabinoid content. II. Developing vegetative leaves of Cannabis sativa L. (Cannabaceae). Bull Narc 33(3):63–71

    PubMed  CAS  Google Scholar 

  • Van Bakel H, Stout JM, Cote AG et al (2011) The draft genome and transcriptome of Cannabis sativa. Gen Biol. doi:10.1186/gb-2011-12-10-r102. http://genomebiology.com/content/pdf/gb-2011-12-10-r102.pdf. Accessed 22 Sep 2014

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Nicholas Boileau, Brenda Brookes and Tanya Antle for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Small.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Small, E., Naraine, S.G.U. Size matters: evolution of large drug-secreting resin glands in elite pharmaceutical strains of Cannabis sativa (marijuana). Genet Resour Crop Evol 63, 349–359 (2016). https://doi.org/10.1007/s10722-015-0254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0254-2

Keywords

Navigation