Skip to main content
Log in

Genetic differentiation, races and interracial admixture in avocado (Persea americana Mill.), and Persea spp. evaluated using SSR markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Avocado (Persea americana Mill.) is a subtropical domesticated fruit tree indigenous to Mesoamerica. It is a member of the Lauraceae family and is separated into three horticultural races (Guatemalan, Mexican, and West Indian) mainly corresponding to their ecological adaptation, botanical, and physiological traits. Main objectives of this study were to characterize the population structure, genetic diversity, and horticultural race of a total of 354 Persea spp. trees whose origin is as follow: 221 trees [P. americana, (218), P. nubigena (2) and P. krugii (1)] from the USDA-ARS-Subtropical Horticultural Research Station, Miami; 105 trees from the Fairchild Farm [P. americana (104) and P. schiedeana (1)], and 28 trees collected in Mexico [P. schiedeana (23) and P. americana (5)]. The complexity of their interracial admixture; as well as mislabeling frequency was also evaluated. Molecular marker analysis utilizing a set of 55 simple sequence repeat (SSR) markers amplified a total of 869 alleles with a mean number of alleles per locus of 15.8 and average polymorphism information content value of 0.71, indicating a high variability in the allele frequency for the collection. Significant deviations from Hardy–Weinberg equilibrium were identified after Bonferroni correction for a large number of loci (48; 87%) due to the presence of null alleles. The main source of variation for this population was found to be within individuals (66.84%), with 19.30% variation among populations, and 13.86% variation among individuals within populations. Moreover, population specific inbreeding indices (F IS ) were calculated for West Indian, Guatemalan, and Mexican [(0.1918; p value 0.0000), (0.1879; p-value 0.0000), (0.0925; p-value 0.0022)], respectively. Bayesian analysis divided the individual genotypes into groups associated with the Guatemalan, Mexican, West Indian races; interracial admixture; complex hybrids and P. schiedeana species. Also, results of the multivariate clustering method (PCA) and genetic distance analyses calculated among all possible individual combinations within the SSR diversity data agreed with Bayesian or Structure analyses results. The 55 SSRs provided complete resolution of all individuals and the estimated mislabeling error was approximately 0.28%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acheampong AK, Akromah R, Ofori FA, Takrama JF, Saada D, Bitton I, Lavi U (2008) Genetic characterization of Ghanaian Avocados using microsatellite markers. J Am Soc Hort Sci 133:801–809

    Google Scholar 

  • Alcaraz ML, Hormaza JI (2007) Molecular characterization and genetic diversity in an avocado collection of cultivars and local Spanish genotypes using SSRs. Hereditas 144:244–253. https://doi.org/10.1111/j.2007.0018-0661.02019x

    Article  CAS  PubMed  Google Scholar 

  • Ashworth VETM, Clegg MT (2003) Microsatellite markers in avocado (Persea americana Mill.): genealogical relationships among cultivated avocado genotypes. J Hered 94:407–415. https://doi.org/10.1093/jhered/esg076

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ya’acov A (1995) The taxonomy of the avocado: a proposed new classification of the Persea subgenus Persea. In: Proceedings III World Avocado Congress, Tel Aviv, Israel, pp 3–7

  • Bergh B (1969) Avocado. In: Ferwerda FP, Wit F (eds) Outlines of perennial crop breeding in the tropics, vol 4. Landbouwhogeschool. Wageningen, The Netherlands, pp 23–48

    Google Scholar 

  • Bergh BO (1992) The origin, nature, and genetic improvement of the avocado. Calif Avocado Soc Yrbk 76:61–75

    Google Scholar 

  • Bergh BO, Bufler G (1987) Avocado genetic resources: Final Report

  • Bergh BO, Ellstrand N (1986) Taxonomy of the avocado. Calif Avocado Soc Yrbk 70:135–145

    Google Scholar 

  • Bergh BO, Scora RW, Storey WB (1973) Comparison of leaf terpenes in Persea subgenus Persea. Bot Gaz 134:130–134. https://doi.org/10.1086/336692

    Article  CAS  Google Scholar 

  • Borrone JW, Schnell RJ, Violi HA, Ploetz RC (2007) Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol Ecol Notes 7:439–444. https://doi.org/10.1111/j.1471-8286.2006.01611.x

    Article  CAS  Google Scholar 

  • Borrone JW, Olano CT, Kuhn DN, Brown JS, Schnell RJ, Violi HA (2008) Outcrossing in Florida avocados as measured using microsatellite markers. J Am Soc Hort Sci 133:255–261

    Google Scholar 

  • Borrone JW et al (2009) An EST-SSR-based linkage map for Persea americana Mill. (avocado). Tree Genet Genom 5:553–560. https://doi.org/10.1007/s11295-009-0208-y

    Article  Google Scholar 

  • Bost J (2013) Persea schiedeana: a high oil “Cinderella Species” fruit with potential for tropical agroforestry systems. Sustainability 6:99–111. https://doi.org/10.3390/su6010099

    Article  Google Scholar 

  • Bufler G, Ben-Ya’acov A (1992) A study of avocado germplasm resources, 1988–1990. III. Ribosomal DNA repeat unit polymorphism in avocado. In: Proceedings II World Avocado Congress, Orange, California, pp 545–550

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  CAS  PubMed  Google Scholar 

  • Chen HF, Morrell PL, Mdl Cruz, Clegg MT, de la Cruz M (2008) Nucleotide diversity and linkage disequilibrium in wild avocado (Persea americana Mill.). J Hered 99:382–389. https://doi.org/10.1093/jhered/esn016

    Article  CAS  PubMed  Google Scholar 

  • Chen HF, Morrell PL, Ashworth VETM, Mdl Cruz, Clegg MT, de la Cruz M (2009) Tracing the geographic origins of major avocado cultivars. J Hered 100:56–65. https://doi.org/10.1093/jhered/esn068

    Article  PubMed  Google Scholar 

  • Coffey MD (1987) Phytophthora root rot of avocado: an integrated approach to control in California. Plant Dis 71:1046–1053

    Google Scholar 

  • Coffey M, Guillemet F, Schieber G, Zentmyer G (1988) Persea schiedeana and Martin Grande: the period from 1920 to 1975. Calif Avocado Soc Yrbk 72:107–120

    Google Scholar 

  • Crane J (2017) Avocado cultivar viewer. UFL-TREC. http://trec.ifas.ufl.edu/crane/avocado/index.shtml. Accessed 17 Jan 2017

  • Crane JH, Balerdi CF, Maguire I (2005) Avocado growing in the Florida home landscape, vol CIR1034. Horticultural Sciences Department, Gainesville

    Google Scholar 

  • Crane J, Douhan G, Faber B, Arpaia M, Bender G, Balerdi C, Barrientos-Priego A (2013) Cultivars and rootstocks. In: Schaffer BA, Wolstenholme BN, Whiley AW (eds) The avocado: botany, production and uses, 2nd edn. CABI, Oxfordshire, pp 200–233

    Chapter  Google Scholar 

  • Davis J, Henderson D, Kobayashi M, Clegg MT, Clegg MT (1998) Genealogical relationships among cultivated avocado as revealed through RFLP analyses. J Hered 89:319–323

    Article  CAS  Google Scholar 

  • Douhan GW, Fuller E, McKee B, Pond E (2011) Genetic diversity analysis of avocado (Persea americana Miller) rootstocks selected under greenhouse conditions for tolerance to phytophthora root rot caused by Phytophthora cinnamomi. Euphytica 182:209. https://doi.org/10.1007/s10681-011-0433-y

    Article  Google Scholar 

  • Ellstrand NC, Lee J, Bergh B, Coffey M, Zentmyer G (1986) Isozymes confirm hybrid parentage for’G755’selections. Calif Avocado Assoc Yrbk 70:199–203

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2016) Food and agriculture data

  • Fiedler J, Bufler G, Bangerth F (1998) Genetic relationships of avocado (Persea americana Mill.) using RAPD markers. Euphytica 101:249–255. https://doi.org/10.1023/a:1018321928400

    Article  Google Scholar 

  • Fiester D (1949) The coyo: a rootstock for the avocado. Calif Avocado Soc Yrbk 34:27–31

    Google Scholar 

  • Furnier GR, Cummings MP, Clegg MT (1990) Evolution of the avocados as revealed by DNA restriction fragment variation. J Hered 81:183–188

    Article  CAS  Google Scholar 

  • Galindo-Tovar ME, Ogata-Aguilar N, Arzate-Fernandez AM (2008) Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genet Resour Crop Evol 55:441–450. https://doi.org/10.1007/s10722-007-9250-5

    Article  Google Scholar 

  • Garcia A (1975) Cytogenetic studies in the genus Persea (Lauraceae). I. Karyology of seven species. Can J Genet Cytol 17:173–180. https://doi.org/10.1139/g75-023

    Article  Google Scholar 

  • Garcia A, Ichikawa S (1979) Cytogenetical studies in the genus persea (Lauraceae): iI. A comparative morphological study on 61 avocado strains. Jpn J Breed 29:66–76

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10(2):305–318

    Article  CAS  PubMed  Google Scholar 

  • Goldring A, Zamir D, Degani C (1985) Duplicated phosphoglucose isomerase genes in avocado. Theor Appl Genet 71:491–494. https://doi.org/10.1007/bf00251194

    Article  CAS  PubMed  Google Scholar 

  • Goldring A, Gazit S, Degani C (1987) Isozyme analysis of mature avocado embryos to determine outcrossing rate in a ‘Hass’ plot. J Am Soc Hort Sci 112:389–392

    CAS  Google Scholar 

  • Griswold H (1945) The Hass avocado. Calif Avocado Soc Yrbk 30:27–31

    Google Scholar 

  • Gross-German E, Viruel MA (2013) Molecular characterization of avocado germplasm with a new set of SSR and EST-SSR markers: genetic diversity, population structure, and identification of race-specific markers in a group of cultivated genotypes. Tree Genet Genom 9:539–555

    Article  Google Scholar 

  • Guzmán LF, Machida-Hirano R, Borrayo E, Cortés-Cruz M, Espíndola-Barquera MdC, Heredia García E (2017) Genetic structure and selection of a core collection for long term conservation of avocado in Mexico. Front Plant Sci 8:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibarra-Laclette E et al (2015) Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids. BMC Genom 16:599. https://doi.org/10.1186/s12864-015-1775-y

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Knight RJ (1976) Breeding avocados for cold hardiness. In: Sauls J, Phillips R, Jackson L (eds) The avocado. Proceedings of 1st international tropical fruit short course. Fruit Crops Dept., FL Coop. Ext. Serv. IFAS, Univ. of Florida, Gainesville, FL, pp 33–36

  • Knight RJ, Jr. (2002) History, distribution and uses. In: Whiley AW, Schaffer B, Wolstenholme BN (eds) The avocado: botany, production and uses. CABI Publishing, Wallingford, pp 1–14. https://doi.org/10.1079/9780851993577.0001

  • Kopp L (1966) A taxonomic revision of the genus Persea in the Western Hemisphere (Persea: Lauraceae). Mem N Y Bot Garden 14:1–120

    Google Scholar 

  • Lahav E, Lavi U (2002) Genetics and classical breeding. In: Whiley AW, Schaffer B, Wolstenholme BN (eds) The avocado: botany, production and uses. CABI Publishing, Wallingford, pp 39–69. https://doi.org/10.1079/9780851993577.0039

  • Lavi U, Lahav E (2003) Avocado genetics and breeding-present and future. In: Proceedings V World Avocado Congress, Malaga, Spain, pp 134–135

  • Lavi U, Hillel J, Vainstein A, Lahav E, Sharon D (1991) Application of DNA fingerprints for identification and genetic-analysis of avocado. J Am Soc Hort Sci 116:1078–1081

    CAS  Google Scholar 

  • Lavi U, Akkaya M, Bhagwat A, Lahav E, Cregan PB (1994) Methodology of generation and characteristics of simple sequence repeat DNA markers in avocado (Persea americana M.). Euphytica 80:171–177. https://doi.org/10.1007/bf00039648

    Article  CAS  Google Scholar 

  • Lorea-Hernández FG (2002) La familia Lauraceae en el sur de México: diversidad, distribución y estado de conservación. Bol Soc Bot México 71:59–70

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Menge JA, Douhan GW, McKee B, Pond E, Bender GS, Faber B (2012) Three New Avocado Rootstock Cultivars Tolerant to Phytophthora Root Rot: ‘Zentmyer’, ‘Uzi’, and ‘Steddom’. HortScience 47:1191–1194

    Google Scholar 

  • Mhameed S, Hillel J, Lahav E, Sharon D, Lavi U (1995) Genetic association between DNA fingerprint fragments and loci controlling agriculturally important traits in avocado (Persea americana Mill.). Euphytica 84:81–87. https://doi.org/10.1007/bf01677560

    Article  Google Scholar 

  • Mhameed S, Sharon D, Kaufman D, Lahav E, Hillel J, Degani C, Lavi U (1997) Genetic relationships within avocado (Persea americana Mill) cultivars and between Persea species. Theor Appl Genet 94:279–286

    Article  Google Scholar 

  • Nakasone H, Paull R (1999) Tropical fruits. CAB International, Wallingford

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press

  • Nirody BS (1922) Investigations in avocado breeding. Univ. of Mass

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population-structure in canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Ploetz R, Schnell RJ, Haynes J (2002) Variable response of open-pollinated seedling progeny of avocado to Phytophthora root rot. Phytoparasitica 30:262–268

    Article  Google Scholar 

  • Popenoe W (1920) Manual of tropical and subtropical fruits. The Macmillan Company, New York

    Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2010) Documentation for structure software: Version 2. 3. https://doi.org/10.1002/spe.4380060305

  • Renner SS (1999) Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. Am J Bot 86:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Collin S, Mijares P, López-López L, Barrientos-Priego A (1998) Historia del aguacate en México. CICTAMEX Coatepec Harinas (México)

  • Schieber E, Zentmyer GA (1992) Archeology of the avocado in Latin America. In: Proceedings II World Avocado Congress, Orange, California, p 49

  • Schnell RJ, Brown JS, Olano CT, Power EJ, Krol CA, Kuhn DN, Motamayor JC (2003) Evaluation of avocado germplasm using microsatellite markers. J Am Soc Hort Sci 128:881–889

    CAS  Google Scholar 

  • Schnell RJ, Tondo CL, Brown JS, Kuhn DN, Ayala-Silva T, Borrone JW, Davenport TL (2009) Outcrossing between ‘Bacon’ Pollinizers and Adjacent ‘Hass’ avocado trees and the description of two new lethal mutants. HortScience 44:1522–1526

    Google Scholar 

  • Scora RW, Bergh BO (1992) Origin of and taxonomic relationships within the genus Persea. In: Proceedings II World Avocado Congress, Orange, California, 1992. pp 505–574

  • Scora RW, Wolstenholme BN, Lavi U (2002) Taxonomy and botany. In: Whiley A, Schaffer B, Wolstenholme B (eds) The avocado: botany, production and uses. CABI Publishing, Wallingford, pp 15–37. https://doi.org/10.1079/9780851993577.0015

  • Sharon D, Cregan PB, Mhameed S, Kusharska M, Hillel J, Lahav E, Lavi U (1997) An integrated genetic linkage map of avocado. Theor Appl Genet 95:911–921

    Article  CAS  Google Scholar 

  • Smith CE (1966) Archeological evidence for selection in avocado. Econ Bot 20:169–175. https://doi.org/10.1007/bf02904012

    Article  Google Scholar 

  • Smith CE (1969) Additional notes on pre-conquest avocados in Mexico. Econ Bot 23:135–140. https://doi.org/10.1007/bf02860618

    Article  Google Scholar 

  • Storey W, Bergh B, Zentmyer G (1986) The origin, indigenous range and dissemination of the avocado. Calif Avocado Soc Yrbk 70:127–133

    Google Scholar 

  • Stout AB (1922) A study in cross-pollination of avocados in Southern California. Calif Avocado Assoc Ann Rept 8:29–45

    Google Scholar 

  • Stout AB (1933) The pollination of avocados. University of Florida Agricultural Experiment Station

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genet 105:437–460

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Tommasini L, Calderon-Vazquez C, Ashworth V, Durbin M, Clegg M (2009) Towards a program of marker-assisted selection on valuable avocado traits. Calif Avocado Soc Yrbk 92:137–164

    Google Scholar 

  • van der Werff H (2002) A synopsis of Persea (Lauraceae) in Central America. Novon 12:575–586. https://doi.org/10.2307/3393142

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. https://doi.org/10.1046/j.1365-294X.2001.01185.x

    Article  CAS  PubMed  Google Scholar 

  • Webber HJ (1916) The avocado industry and the avocado association. Presidential address. Calif Avocado Assoc Ann Rept 2:55–67

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Williams LO (1977) The avocados, a synopsis of the genus Persea subg. Persea. Econ Bot 31:315–320. https://doi.org/10.1007/bf02866883

    Article  Google Scholar 

  • Zentmyer GA (1957) The search for resistant rootstocks in Latin America. Calif Avocado Soc Yrbk 41:101–106

    Google Scholar 

  • Zentmyer GA (1991) The genus Persea. Calif Avocado Soc Yrbk 75:119–123

    Google Scholar 

  • Zentmyer GA, Schieber E (1992) Persea and Phytophthora in Latin America. In: Proceedings II World Avocado Congress, Orange, California, pp 61–66

  • Zentmyer GA, Thorn WA, Burns RM (1963) The duke avocado. Calif Avocado Soc Yrbk 47:28–36

    Google Scholar 

  • Zentmyer G, Schieber E, Guillemet F (1988) History of the Martin Grande rootstock. Calif Avocado Soc Yrbk 72:121–125

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. Alan W. Meerow, Tomas Ayala-Silva, Eric J. Bishop von Wettberg, James W. Borrone, and Dapeng Zhang for helpful comments and suggestions on the manuscript. This work has been supported by the USDA-ARS-SHRS CRIS project Conservation, Genetic Analyses, and Utilization of Subtropical/tropical Fruit Crops, Sugarcane, and Miscanthus Genetic Resources (Project No. 6038-21000-022-00). We also thank anonymous reviewers for useful comments and suggestions on this publication. Dedication. The authors are extremely grateful for the years of service that Ms. Cecile L. Tondo gave to our research program at USDA-ARS-SHRS. She passed away on April 28, 2016 and is greatly missed. This publication is dedicated to her memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman A. Gutiérrez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Disclaimer: Mention of a trademark, warranty, proprietary product or vendor does not constitute a guarantee by the U.S. Department of Agriculture or Mars Inc. and does not imply approval or recommendation of the product to the exclusion of others that may be suitable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92 kb)

Supplementary material 2 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boza, E.J., Tondo, C.L., Ledesma, N. et al. Genetic differentiation, races and interracial admixture in avocado (Persea americana Mill.), and Persea spp. evaluated using SSR markers. Genet Resour Crop Evol 65, 1195–1215 (2018). https://doi.org/10.1007/s10722-018-0608-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0608-7

Keywords

Navigation