Skip to main content

Advertisement

Log in

A meta-analysis of microRNA expression profiling studies in heart failure

  • Unsolicited Articles
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a major consequence of many cardiovascular diseases with high rate of morbidity and mortality. Early diagnosis and prevention are hampered by the lack of informative biomarkers. The aim of this study was to perform a meta-analysis of the miRNA expression profiling studies in HF to identify novel candidate biomarkers or/and therapeutic targets. A comprehensive literature search of the PubMed for miRNA expression studies related to HF was carried out. The vote counting and robust rank aggregation meta-analysis methods were used to identify significant meta-signatures of HF-miRs. The targets of HF-miRs were identified, and network construction and gene set enrichment analysis (GSEA) were performed to identify the genes and cognitive pathways most affected by the dysregulation of the miRNAs. The literature search identified forty-five miRNA expression studies related to CHF. Shared meta-signature was identified for 3 up-regulated (miR-21, miR-214, and miR-27b) and 13 down-regulated (miR-133a, miR-29a, miR-29b, miR-451, miR-185, miR-133b, miR-30e, miR-30b, miR-1, miR-150, miR-486, miR-149, and miR-16-5p) miRNAs. Network properties showed miR-29a, miR-21, miR-29b, miR-1, miR-16, miR-133a, and miR-133b have the most degree centrality. GESA identified functionally related sets of genes in signaling and community pathways in HF that are the targets of HF-miRs. The miRNA expression meta-analysis identified sixteen highly significant HF-miRs that are differentially expressed in HF. Further validation in large patient cohorts is required to confirm the significance of these miRs as HF biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ponikowski P, Voors A, Anker S, Bueno H, Cleland J, Coats A, Falk V, González-Juanatey J, Harjola V, Jankowska E (2016) Authors/Task Force Members; Document Reviewers (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975

  2. Chopra VK, Mittal S, Bansal M, Singh B, Trehan N (2019) Clinical profile and one-year survival of patients with heart failure with reduced ejection fraction: the largest report from India. Indian Heart J 71(3):242–248

    PubMed  PubMed Central  Google Scholar 

  3. Inamdar AA, Inamdar AC (2016) Heart failure: diagnosis, management and utilization. J Clin Med 5(7):62

    PubMed Central  Google Scholar 

  4. Ledwidge M, Gallagher J, Conlon C, Tallon E, O’Connell E, Dawkins I, Watson C, O’Hanlon R, Bermingham M, Patle A (2013) Natriuretic peptide–based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA 310(1):66–74

    CAS  PubMed  Google Scholar 

  5. Tijsen AJ, Pinto YM, Creemers EE (2012) Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 303(9):H1085–H1095

    CAS  PubMed  Google Scholar 

  6. Duggal B, Gupta KM, V Naga Prasad S (2016) Potential role of microRNAs in cardiovascular disease: are they up to their hype? Curr Cardiol Rev 12(4):304–310

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014

  8. Boon R (2012) The role of microRNAs in cardiovascular aging. Vascul Pharmacol 5(56):330

    Google Scholar 

  9. Sanoudou D, Tousoulis D, Cokkinos DV (2015) The role of microRNAs in cardiovascular disease. In: Introduction to Translational Cardiovascular Research. Springer, pp 143–165

  10. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD et al (2007) Altered microRNA expression in human heart disease. Physiol Genomics. 31(3):367–73

    CAS  PubMed  Google Scholar 

  11. Huang S, Chen M, Li L, He Ma HuD, Zhang X, Li J, Tanguay RM, Feng J, Cheng L (2014) Circulating MicroRNAs and the occurrence of acute myocardial infarction in Chinese populations. Circ Cardiovasc Genet 7(2):189–198

    CAS  PubMed  Google Scholar 

  12. Yan H, Ma F, Zhang Y, Wang C, Qiu D, Zhou K, Hua Y, Li Y (2017) miRNAs as biomarkers for diagnosis of heart failure: A systematic review and meta-analysis. Medicine 96(22)

  13. Zhou S-S, Jin J-P, Wang J-Q, Zhang Z-G, Freedman JH, Zheng Y, Cai L (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39(7):1073–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang K, Shen Q, Lei S, Lu T, Cai X, Guo L, Sun G, Lv G, Sun X, Chen S (2019) Identifying microRNA biomarkers and constructing microRNA-regulated networks in coronary artery diseases: a meta-analysis. Int J Clin Exp Med 12(3):2899-+

  15. Wang S-S, Wu L-J, Xiao H-B, He Y, Yan Y-X (2018) A meta-analysis of dysregulated miRNAs in coronary heart disease. Life Sci 215:170–181

    CAS  PubMed  Google Scholar 

  16. Kim JS, Pak K, Goh TS, Jeong DC, Han M-E, Kim J, Oh S-O, Kim CD, Kim YH (2018) Prognostic value of microRNAs in coronary artery diseases: a meta-analysis. Yonsei Med J 59(4):495–500

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rikke BA, Wynes MW, Rozeboom LM, Barón AE, Hirsch FR (2015) Independent validation test of the vote-counting strategy used to rank biomarkers from published studies. Biomarkers in medicine 9(8):751–761

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24(31):5043–5051

    CAS  PubMed  Google Scholar 

  19. Kolde R, Laur S, Adler P, Vilo J (2012) Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28(4):573–580

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M (2018) Identification of candidate microRNA biomarkers in renal fibrosis: a meta-analysis of profiling studies. Biomarkers 23(8):713–724

    CAS  PubMed  Google Scholar 

  21. Gholaminejad A, Tehrani HA, Fesharaki MG (2018) Identification of candidate microRNA biomarkers in diabetic nephropathy: a meta-analysis of profiling studies. J Nephrol 31(6):813–831

    CAS  PubMed  Google Scholar 

  22. Song Z-y, Chao F, Zhuo Z, Ma Z, Li W, Chen G (2019) Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis. Aging (Albany NY) 11(13):4736

    CAS  Google Scholar 

  23. Cakmak HA, Coskunpinar E, Ikitimur B, Barman HA, Karadag B, Tiryakioglu NO, Kahraman K, Vural VA (2015) The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med 16(6):431–437

    CAS  Google Scholar 

  24. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618

    CAS  PubMed  Google Scholar 

  25. Chen F, Yang J, Li Y, Wang H (2018) Circulating microRNAs as novel biomarkers for heart failure. Hellenic J Cardiol 59(4):209–214

    PubMed  Google Scholar 

  26. Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170(6):1831–1840

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Derda AA, Pfanne A, Bär C, Schimmel K, Kennel PJ, Xiao K, Schulze PC, Bauersachs J, Thum T (2018) Blood-based microRNA profiling in patients with cardiac amyloidosis. PloS one 13 (10)

  28. Fang L, Ellims AH, Moore X-l, White DA, Taylor AJ, Chin-Dusting J, Dart AM (2015) Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med 13(1):314

    PubMed  PubMed Central  Google Scholar 

  29. Feng H, Ouyang W, Liu J, Sun Y, Hu R, Huang L, Xian J, Jing C, Zhou M (2014) Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz J Med Biol Res 47(5):361–368

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N (2011) Assessment of plasma miRNAs in congestive heart failure. Circ J 75(2):336–340

    CAS  PubMed  Google Scholar 

  31. Ge Y, Pan S, Guan D, Yin H, Fan Y, Liu J, Zhang S, Zhang H, Feng L, Wang Y (2013) microRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1832(1):1–10

  32. Gupta MK, Halley C, Duan Z-H, Lappe J, Viterna J, Jana S, Augoff K, Mohan ML, Vasudevan NT, Na J (2013) miRNA-548c: a specific signature in circulating PBMCs from dilated cardiomyopathy patients. J Mol Cell Cardiol 62:131–141

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ikitimur B, Cakmak HA, Coskunpinar E, Barman HA, Vural VA (2015) The relationship between circulating microRNAs and left ventricular mass in symptomatic heart failure patients with systolic dysfunction. Kardiologia Polska (Polish Heart Journal) 73(9):740–746

    Google Scholar 

  34. Isserlin R, Merico D, Wang D, Vuckovic D, Bousette N, Gramolini AO, Bader GD, Emili A (2015) Systems analysis reveals down-regulation of a network of pro-survival miRNAs drives the apoptotic response in dilated cardiomyopathy. Mol BioSyst 11(1):239–251

    CAS  PubMed  Google Scholar 

  35. Jagannathan R, Thapa D, Nichols CE, Shepherd DL, Stricker JC, Croston TL, Baseler WA, Lewis SE, Martinez I, Hollander JM (2015) Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart. Circ Cardiovasc Genet 8(6):785–802

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Fan J, Yin Z, Wang F, Chen C, Wang DW (2016) Identification of cardiac-related circulating microRNA profile in human chronic heart failure. Oncotarget 7(1):33

    PubMed  Google Scholar 

  37. Li X, Zhang X, Wang T, Sun C, Jin T, Yan H, Zhang J, Li X, Geng T, Chen C (2013) Regulation by bisoprolol for cardiac microRNA expression in a rat volume-overload heart failure model. J Nanosci Nanotechnol 13(8):5267–5275

    CAS  PubMed  Google Scholar 

  38. Lok SI, de Jonge N, van Kuik J, van Geffen AJ, Huibers MM, van der Weide P, Siera E, Winkens B, Doevendans PA, de Weger RA (2015) microRNA expression in myocardial tissue and plasma of patients with end-stage heart failure during LVAD support: comparison of continuous and pulsatile devices. PloS one 10(10)

  39. Marques FZ, Vizi D, Khammy O, Mariani JA, Kaye DM (2016) The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail 18(8):1000–1008

    CAS  PubMed  Google Scholar 

  40. Muthusamy S, DeMartino AM, Watson LJ, Brittian KR, Zafir A, Dassanayaka S, Hong KU, Jones SP (2014) microRNA-539 is up-regulated in failing heart, and suppresses O-GlcNAcase expression. J Biol Chem 289(43):29665–29676

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Prasad SVN, Duan Z-H, Gupta MK, Surampudi VSK, Volinia S, Calin GA, Liu C-G, Kotwal A, Moravec CS, Starling RC (2009) Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem 284(40):27487–27499

    Google Scholar 

  42. Qiang L, Hong L, Ningfu W, Huaihong C, Jing W (2013) Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Int J Cardiol 168(3):2082–2088

    PubMed  Google Scholar 

  43. Ramani R, Vela D, Segura A, McNamara D, Lemster B, Samarendra V, Kormos R, Toyoda Y, Bermudez C, Frazier O (2011) A micro-ribonucleic acid signature associated with recovery from assist device support in 2 groups of patients with severe heart failure. J Am Coll Cardiol 58(22):2270–2278

    PubMed  PubMed Central  Google Scholar 

  44. Sayed D, Hong C, Chen I-Y, Lypowy J, Abdellatif M (2007) microRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424

    CAS  PubMed  Google Scholar 

  45. Song L, Su M, Wang S, Zou Y, Wang X, Wang Y, Cui H, Zhao P, Hui R, Wang J (2014) miR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC 1. J Cell Mol Med 18(11):2266–2274

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stauffer BL, Russell G, Nunley K, Miyamoto SD, Sucharov CC (2013) miRNA expression in pediatric failing human heart. J Mol Cell Cardiol 57:43–46

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106(6):1035

    CAS  PubMed  Google Scholar 

  48. Varga ZV, Kupai K, Szűcs G, Gáspár R, Pálóczi J, Faragó N, Zvara Á, Puskás LG, Rázga Z, Tiszlavicz L (2013) microRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol 62:111–121

    CAS  PubMed  Google Scholar 

  49. Wang H, Chen F, Tong J, Li Y, Cai J, Wang Y, Li P, Hao Y, Tian W, Lv Y (2017) Circulating microRNAs as novel biomarkers for dilated cardiomyopathy. Cardiol J 24(1):65–73

    PubMed  Google Scholar 

  50. Wang J, Xu R, Lin F, Zhang S, Zhang G, Hu S, Zheng Z (2009) microRNA: novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology 113(2):81–88

    CAS  PubMed  Google Scholar 

  51. Wang K, Liu F, Zhou L-Y, Long B, Yuan S-M, Wang Y, Liu C-Y, Sun T, Zhang X-J, Li P-F (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114(9):1377–1388

    CAS  PubMed  Google Scholar 

  52. Wang X, Wang H-X, Li Y-L, Zhang C-C, Zhou C-Y, Wang L, Xia Y-L, Du J, Li H-H (2015) microRNA Let-7i negatively regulates cardiac inflammation and fibrosis. Hypertension 66(4):776–785

    CAS  PubMed  Google Scholar 

  53. Wijnen WJ, van der Made I, van den Oever S, Hiller M, de Boer BA, Picavet DI, Chatzispyrou IA, Houtkooper RH, Tijsen AJ, Hagoort J (2014) Cardiomyocyte-specific miRNA-30c over-expression causes dilated cardiomyopathy. PloS one 9(5)

  54. Zhao Y, Li Y, Tong L, Liang X, Zhang H, Li L, Fan G, Wang Y (2018) Analysis of microRNA expression profiles induced by Yiqifumai injection in rats with chronic heart failure. Front Physiol 9:48

    PubMed  PubMed Central  Google Scholar 

  55. Zhu X, Wang H, Liu F, Chen L, Luo W, Su P, Li W, Yu L, Yang X, Cai J (2013) Identification of micro-RNA networks in end-stage heart failure because of dilated cardiomyopathy. J Cell Mol Med 17(9):1173–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pofi R, Giannetta E, Galea N, Francone M, Campolo F, Barbagallo F, Gianfrilli D, Venneri MA, Filardi T, Cristini C (2020) Diabetic Cardiomiopathy Progression is Triggered by miR122–5p and Involves Extracellular Matrix: A 5-Year Prospective Study. JACC: Cardiovascular Imaging

  57. Lin B, Feng DG, Xu J (2019) microRNA-665 silencing improves cardiac function in rats with heart failure through activation of the cAMP signaling pathway. J Cell Physiol 234(8):13169–13181

    CAS  PubMed  Google Scholar 

  58. Zhou S, Lei D, Bu F, Han H, Zhao S, Wang Y (2019) microRNA-29b-3p targets SPARC gene to protect cardiocytes against autophagy and apoptosis in hypoxic-induced H9c2 cells. J Cardiovasc Transl Res 12(4):358–365

    PubMed  Google Scholar 

  59. Huang J, Jiang R, Chu X, Wang F, Sun X, Wang Y, Pang L (2020) Overexpression of microRNA‐23a‐5p induces myocardial infarction by promoting cardiomyocyte apoptosis through inhibited of PI3K/AKT signalling pathway. Cell Biochem Funct

  60. Zhang B, Li B, Qin F, Bai F, Sun C, Liu Q (2019) Expression of serum microRNA-155 and its clinical importance in patients with heart failure after myocardial infarction. J Int Med Res 47(12):6294–6302

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Su Q, Zhang P, Yu D, Wu Z, Li D, Shen F, Liao P, Yin G (2019) Upregulation of miR-93 and inhibition of LIMK1 improve ventricular remodeling and alleviate cardiac dysfunction in rats with chronic heart failure by inhibiting RhoA/ROCK signaling pathway activation. Aging (Albany NY) 11(18):7570

    CAS  Google Scholar 

  62. Ding H, Wang Y, Hu L, Xue S, Wang Y, Zhang L, Zhang Y, Qi H, Yu H, Aung LHH (2020) Combined detection of miR-21–5p, miR-30a-3p, miR-30a-5p, miR-155–5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep 40(3)

  63. Sun B, Meng M, Wei J, Wang S (2020) Long noncoding RNA PVT1 contributes to vascular endothelial cell proliferation via inhibition of miR-190a-5p in diagnostic biomarker evaluation of chronic heart failure. Exp Ther Med 19(5):3348–3354

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu ZY, Lu M, Liu J, Wang ZN, Wang WW, Li Y, Song ZJ, Xu L, Liu Q, Li FH (2020) microRNA-144 regulates angiotensin II-induced cardiac fibroblast activation by targeting CREB. Exp Ther Med 20(3):2113–2121

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Aleshcheva G, Pietsch H, Escher F, Schultheiss HP (2020) microRNA profiling as a novel diagnostic tool for identification of patients with inflammatory and/or virally induced cardiomyopathies. ESC Heart Failure

  66. Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D (2020) Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med

  67. Wong LL, Zou R, Zhou L, Lim JY, Phua DC, Liu C, Chong JP, Ng JY, Liew OW, Chan SP (2019) Combining circulating microRNA and NT-proBNP to detect and categorize heart failure subtypes. J Am Coll Cardiol 73(11):1300–1313

    CAS  PubMed  Google Scholar 

  68. Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341(17):1276–1283

    CAS  PubMed  Google Scholar 

  69. Zhang Y, Kanter EM, Yamada KA (2010) Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovasc Pathol 19(6):e233–e240

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen J-F, Newman M, Rojas M, Hammond SM, Wang D-Z (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42(6):1137–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S (2008) microRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984

    CAS  PubMed  Google Scholar 

  72. Liang H, Zhang C, Ban T, Liu Y, Mei L, Piao X, Zhao D, Lu Y, Chu W, Yang B (2012) A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int J Biochem Cell Biol 44(12):2152–2160

    CAS  PubMed  Google Scholar 

  73. Yang Q, Yang K, Li A (2014) microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med Rep 9(6):2213–2220

    CAS  PubMed  Google Scholar 

  74. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A (2014) Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig 124(5):2136–2146

    CAS  PubMed  Google Scholar 

  75. Mendell JT, Olson EN (2012) microRNAs in stress signaling and human disease. Cell 148(6):1172–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Deng F, Xu X, Chen Y-H (2014) The role of miR-1 in the heart: From cardiac morphogenesis to physiological function. Hum Genet Embryol 4 (119):2161–0436.1000119

  77. Sucharov C, Bristow MR, Port JD (2008) miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 45(2):185–192

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dong D-L, Chen C, Huo R, Wang N, Li Z, Tu Y-J, Hu J-T, Chu X, Huang W, Yang B-F (2010) Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension 55(4):946–952

    CAS  PubMed  Google Scholar 

  79. Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G (2009) microRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J 50(3):377–387

    CAS  PubMed  Google Scholar 

  80. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491

    CAS  PubMed  Google Scholar 

  81. Luo X, Lin H, Du Z, Xiao J, Lu Y, Yang B, Wang Z (2007) Downregulation of microRNA-1/microRNA-133 and overexpression of Sp1 activates re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. Am Heart Assoc

  82. Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5(6):559–566. https://doi.org/10.1038/ncb995

    Article  CAS  PubMed  Google Scholar 

  83. Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee K-H, Ma Q, Kang PM, Golub TR (2009) microRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29(8):2193–2204

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang R, Long T, Lui KO, Chen Y, Huang Z-P (2020) A roadmap for fixing the heart: RNA regulatory networks in cardiac disease. Mol Ther Nucleic Acids

  85. Li Q, Song X-W, Zou J, Wang G-K, Kremneva E, Li X-Q, Zhu N, Sun T, Lappalainen P, Yuan W-J (2010) Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci 123(14):2444–2452

    CAS  PubMed  Google Scholar 

  86. Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D (2013) Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2(2):e000078

    PubMed  PubMed Central  Google Scholar 

  87. Nelson TJ, Balza R Jr, Xiao Q, Misra RP (2005) SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy. J Mol Cell Cardiol 39(3):479–489

    CAS  PubMed  Google Scholar 

  88. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S, VanBuren V, Dostal DE, Zhang SL, Peng X (2017) Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 421(2):271–283

    CAS  PubMed  Google Scholar 

  90. Qian L, Wythe JD, Liu J, Cartry J, Vogler G, Mohapatra B, Otway RT, Huang Y, King IN, Maillet M (2011) Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. J Cell Biol 193(7):1181–1196

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hua Y, Zhang Y, Ren J (2012) IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J Cell Mol Med 16(1):83–95

    CAS  PubMed  Google Scholar 

  92. Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, Guo S, Wang Y, Fan K, Zhan D (2012) Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res 22(3):516–527

    CAS  PubMed  Google Scholar 

  93. Kim JO, Song DW, Kwon EJ, Hong S-E, Song HK, Min CK, Kim DH (2015) miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One 10(3)

  94. Kim JO, Kwon EJ, Song DW, Lee JS, Kim DH (2016) miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+ exchanger-1 in the heart. BMB reports 49(4):208

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104(2):170–178

    CAS  PubMed  Google Scholar 

  96. Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci 105(35):13027–13032

    PubMed  Google Scholar 

  97. Zhang Y, Huang X-R, Wei L-H, Chung AC, Yu C-M, Lan H-Y (2014) miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther 22(5):974–985

    PubMed  PubMed Central  Google Scholar 

  98. Abonnenc M, Nabeebaccus AA, Mayr U, Barallobre-Barreiro J, Dong X, Cuello F, Sur S, Drozdov I, Langley SR, Lu R (2013) Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res 113(10):1138–1147

    CAS  PubMed  Google Scholar 

  99. Zhu J-N, Chen R, Fu Y-H, Lin Q-X, Huang S, Guo L-L, Zhang M-Z, Deng C-Y, Zou X, Zhong S-L (2013) Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat. PloS one 8(9)

  100. Li M, Wang N, Zhang J, He H-P, Gong H-Q, Zhang R, Song T-F, Zhang L-N, Guo Z-X, Cao D-S (2016) microRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes. Gene 585(1):44–50

    CAS  PubMed  Google Scholar 

  101. Chen Y, Song Y-X, Wang Z-N (2013) The microRNA-148/152 family: multi-faceted players. Mol Cancer 12(1):43

    PubMed  PubMed Central  Google Scholar 

  102. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81

    CAS  PubMed  Google Scholar 

  103. Tang Y, Wang Y, Park Km HQ, Teoh Jp BZ, Ranganathan P, Jayakumar C, Li J, Su H, Tang Y, Ramesh G (2015) Kim Im. microRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 106:387–397

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang H, Cai J (2017) The role of microRNAs in heart failure. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1863 (8):2019–2030

  105. Abu-Halima M, Meese E, Saleh MA, Keller A, Abdul-Khaliq H, Raedle-Hurst T (2019) Micro-RNA 150–5p predicts overt heart failure in patients with univentricular hearts. PloS one 14(10)

  106. Deng P, Chen L, Liu Z, Ye P, Wang S, Wu J, Yao Y, Sun Y, Huang X, Ren L (2016) microRNA-150 inhibits the activation of cardiac fibroblasts by regulating c-Myb. Cell Physiol Biochem 38(6):2103–2122

    CAS  PubMed  Google Scholar 

  107. Xu C, Hu Y, Hou L, Ju J, Li X, Du N, Guan X, Liu Z, Zhang T, Qin W (2014) β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression. J Mol Cell Cardiol 75:111–121

    CAS  PubMed  Google Scholar 

  108. Wang J, Liew OW, Richards AM, Chen Y-T (2016) Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci 17(5):749

    PubMed Central  Google Scholar 

  109. Kaneko M, Satomi T, Fujiwara S, Uchiyama H, Kusumoto K, Nishimoto T (2017) AT1 receptor blocker azilsartan medoxomil normalizes plasma miR-146a and miR-342-3p in a murine heart failure model. Biomarkers 22(3–4):253–260

    CAS  PubMed  Google Scholar 

  110. Tang Y, Wang Y, Park K-m, Hu Q, Teoh J-p, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H (2015) microRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 106(3):387–397

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang X-t, Wu X-d, Lu Y-x, Sun Y-h, Zhu H-h, Liang J-b, He W-k, Zeng Z-y, Li L (2017) Potential involvement of MiR-30e-3p in myocardial injury induced by coronary microembolization via autophagy activation. Cell Physiol Biochem 44(5):1995–2004

    CAS  PubMed  Google Scholar 

  112. Lai L, Chen J, Wang N, Zhu G, Duan X, Ling F (2017) miRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci 169:69–75

    CAS  PubMed  Google Scholar 

  113. Wei C, Li L, Gupta S (2014) NF-κB-mediated miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2. Mol Cell Biochem 387(1–2):135–141

    CAS  PubMed  Google Scholar 

  114. Huang Z, Wu S, Kong F, Cai X, Ye B, Shan P, Huang W (2017) micro RNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med 21(3):467–474

    CAS  PubMed  Google Scholar 

  115. Huang W, Tian S-S, Hang P-Z, Sun C, Guo J, Du Z-M (2016) Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Ther Nucleic Acids 5:e296

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C (2009) microRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47(1):5–14

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Dong S, Ma W, Hao B, Hu F, Yan L, Yan X, Wang Y, Chen Z, Wang Z (2014) microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int J Clin Exp Pathol 7(2):565

    PubMed  PubMed Central  Google Scholar 

  118. Jennewein C, von Knethen A, Schmid T, Brüne B (2010) microRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARγ) mRNA destabilization. J Biol Chem 285(16):11846–11853

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ding G, Fu M, Qin Q, Lewis W, Kim HW, Fukai T, Bacanamwo M, Chen YE, Schneider MD, Mangelsdorf DJ (2007) Cardiac peroxisome proliferator-activated receptor δ is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res 76(2):269–279

    CAS  PubMed  Google Scholar 

  120. Duan Q, Yang L, Gong W, Chaugai S, Wang F, Chen C, Wang P, Zou MH, Wang DW (2015) MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol 230(8):1964–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zeng L, Xiao Q, Chen M, Margariti A, Martin D, Ivetic A, Xu H, Mason J, Wang W, Cockerill G (2013) Vascular endothelial cell growth–activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation 127(16):1712–1722

    CAS  PubMed  Google Scholar 

  122. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412(6847):647–651

    CAS  PubMed  Google Scholar 

  123. Di Bari MG, Lutsiak MC, Takai S, Mostböck S, Farsaci B, Semnani RT, Wakefield LM, Schlom J, Sabzevari H (2009) TGF-β modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and Spred1 expression. Cancer Immunol Immunother 58(11):1809–1818

    PubMed  PubMed Central  Google Scholar 

  124. Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernández-Hernando C, Suárez Y (2011) microRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol 31(11):2595–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Adhikari N, Guan W, Capaldo B, Mackey AJ, Carlson M, Ramakrishnan S, Walek D, Gupta M, Mitchell A, Eckman P (2014) Identification of a new target of miR-16, Vacuolar Protein Sorting 4a. PloS one 9(7)

  126. Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, Li H, Weiss MJ, Ren X, Fan G-C (2012) Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res 94(2):379–390

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lin J, Jiang J, Zhou R, Li X, Ye J (2019) microRNA-451b participates in coronary heart disease by targeting VEGFA. Open Med 15(1):1–7

    CAS  Google Scholar 

  128. Lai CT, Ng EK, Chow P-c, Kwong A, Cheung Y-f (2013) Circulating microRNA expression profile and systemic right ventricular function in adults after atrial switch operation for complete transposition of the great arteries. BMC Cardiovascular Disorders 13(1):73

    PubMed  PubMed Central  Google Scholar 

  129. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC genomics 8(1):166

    PubMed  PubMed Central  Google Scholar 

  130. Cho W (2011) Circulating microRNAs as minimally invasive biomarkers for cancer theragnosis and prognosis. Frontiers in genetics 2:7

    PubMed  PubMed Central  Google Scholar 

  131. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997

    CAS  PubMed  Google Scholar 

  132. Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24(31):5043–5051

    CAS  PubMed  Google Scholar 

  133. Chan SK, Griffith OL, Tai IT, Jones SJ (2008) Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol Biomarkers Prev 17(3):543–552

    CAS  PubMed  Google Scholar 

  134. Vosa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T (2013) Meta-analysis of microRNA expression in lung cancer. Int J Cancer 132(12):2884–2893

    CAS  PubMed  Google Scholar 

  135. Licursi V, Conte F, Fiscon G, Paci P (2019) MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics 20(1):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaghayegh Haghjooy Javanmard.

Ethics declarations

Consent for publication

All authors consent to the publication of the manuscript in Heart Failure Reviews.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 25 KB)

Supplementary file2 (XLSX 120 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholaminejad, A., Zare, N., Dana, N. et al. A meta-analysis of microRNA expression profiling studies in heart failure. Heart Fail Rev 26, 997–1021 (2021). https://doi.org/10.1007/s10741-020-10071-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-10071-9

Keywords

Navigation