Skip to main content
Log in

Facing the necessity of describing estuarine ecosystems: a review of food web ecology study techniques

  • ECSA38
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Estuarine areas are sites of human pressures and degradation. In order to maintain and/or restore the quality of estuarine ecosystems, it is necessary to describe their structure and functioning. For that reason, many recent scientific works focus on food webs, which are depicted as being good indicators of the functioning of aquatic ecosystems. Hence it is necessary to question how estuarine food webs can be described. This paper proposes a pragmatic and practical review of the most widely used techniques (stomach/gut content analysis, stable isotope ratios and biochemical markers) with emphasis on their main advantages, drawbacks and bias according to possible ecological goals (ecological quality objectives). These approaches, although quite different, provide complementary information about the trophic relationships in the system, that is to say the sources of organic matter and the description of energy flows between the different compartments of the food web. In trophic models, all these results can be integrated to a global picture of the estuarine trophic structure. This is considered to be an essential step towards the understanding of the functioning of these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baird, D., McGlade J. M. & R. E. Ulanowicz., 1991. The comparative ecology of 6 marine ecosystems. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 333: 15–29.

    Article  Google Scholar 

  • Baird, D. & R. E. Ulanowicz, 1993. Comparative-study on the trophic structure, cycling and ecosystem properties of 4 tidal estuaries. Marine Ecology-Progress Series 99: 221–237.

    Google Scholar 

  • Baldo, F. & P. Drake, 2002. A multivariate approach to the feeding habits of small fishes in the Guadalquivir Estuary. Journal of Fish Biology 61: 21–32.

    Article  Google Scholar 

  • Bardonnet, A. & P. Riera, 2005. Feeding of glass eels (Anguilla anguilla) in the course of their estuarine migration: new insights from stable isotope analysis. Estuarine, Coastal and Shelf Science 63(1–2): 201–209.

    Article  CAS  Google Scholar 

  • Baretta, J. W. & P. Ruardij (eds), 1988. Tidal flat estuaries: simulation and analysis of the Ems estuary, Ecological Studies 71. Berlin, Germany, Springer Verlag, 353 pp.

  • Berg, J., 1979. Discussion of methods of investigating the food of fishes, with reference to a preliminary study of the prey of Gobiusculus flavescens (Gobiidae). Marine Biology 50: 263–273.

    Article  Google Scholar 

  • Bertin, L., 1958. Appareil digestif. In Grassé, P. P. (ed.), Traité de zoologie. Masson & Cie, Paris, 1967–1983.

    Google Scholar 

  • Bodineau, L., G. Thoumelin, V. Béghin, & M. Wartel, 1998. Particule organic matter composition in the Estuarine Turbidity Maxima (ETM) of the Seine River estuary. Hydrobiologia 373/374: 281–295.

    Article  CAS  Google Scholar 

  • Bowen, S. H., 1996. Quantitative Description of the Diet. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques American Fisheries Society. Bethesda, Maryland, 513–532.

  • Brosse, L., P. Dumont, M. Lepage & E. Rochard, 2002. Evaluation of a gastric lavage method for sturgeons. North American Journal of Fisheries Management 22(3): 955–960.

    Article  Google Scholar 

  • Canuel, E. A., J. E. Cloern, D. B. Ringelberg, J. B. Guckert & G. H. Rau, 1995. Molecular and isotopic tracers used to examine sources or organic matter and its incorporation into the food webs of San Francisco bay. Limnology and Oceanography 40: 67–81.

    Article  CAS  Google Scholar 

  • Carman, K. R. & B. Fry, 2002. Small-sample methods for delta C-13 and delta N-15 analysis of the diets of marsh meiofaunal species using natural-abundance and tracer-addition isotope techniques. Marine Ecology Progress Series 240: 85–92.

    CAS  Google Scholar 

  • Christensen, V. & D. Pauly, 1992. ECOPATH II–a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169–185.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Cloern, J. E., E. A. Canuel & D. Harris, 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and oceanography 47: 713–729.

    Article  CAS  Google Scholar 

  • Cortés, E., 1997. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54: 726–738.

    Article  Google Scholar 

  • Costa, M. J., 1982. Contribution à l’étude de l’écologie des poissons de l’estuaire du Tage (Portugal). PhD Thesis, Université de Paris VII, 256 pp.

  • Costa, M. J., 1988. Ecologie alimentaire des poissons de l’estuaire du Tage. Cybium 12: 301–320.

    Google Scholar 

  • Costanza, R., R. D’Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. Van den Belt, 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  CAS  Google Scholar 

  • Currie, B. R. & R. B. Johns, 1988. Lipids as indicators of the origin of organic matter in fine marine particular matter. Australian Journal of Marine and Freshwater Research 39: 371–383.

    Article  CAS  Google Scholar 

  • Currin, C. A., S. Y. Newell & H. W. Paerl, 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt-mash food webs: considerations based on multiple stable isotope analysis. Marine Ecology Progress Series 121: 99–116.

    Google Scholar 

  • Davenport, S. R. & N. J. Bax, 2002. A trophic study of a marine ecosystem off southeasten Australia using stable isotopes of carbon and nitrogen. Canadian Journal of Fisheries and Aquatic Sciences 59: 514–530.

    Article  Google Scholar 

  • David, V., 2001. Réseau trophique zooplanctonique dans l’estuaire de la Gironde: caractérisation et modélisation de la relation mysidacés-copépodes. DEA, Université de Bordeaux I, Bordeaux.

    Google Scholar 

  • Day, J. H., Blaber S. J. M. & J. H. Wallace, 1981. Estuarine fishes. In Day, J. H. (ed.), Estuarine ecology with particular reference to Southern Africa, Balkena, Cape Town, 197–221.

  • Deegan, L. A. & R. H. Garritt, 1997. Evidence for spatial variability in estuarine food webs. Marine ecology process series 147: 31–47.

    Google Scholar 

  • de Jonge, V. N., 1990. Responses of the Dutch Wadden Sea ecosystem to phosphorus discharges from the River Rhine. Hydrobiologia 195: 49–62.

    Article  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.

    Article  CAS  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.

    Article  CAS  Google Scholar 

  • Dufour, E. & D. Gerdeaux, 2001. Apports des isotopes stables (13C/12C, 15N/14N, 18O/16O, 36S/34S, 87Sr/86Sr) aux études écologiques sur les poissons. Cybium 25: 369–382.

    Google Scholar 

  • Elie, P. & J. Marchand, 1983. Contribution à l’étude des ressources bentho-démersales de l’estuaire de la Loire : biologie et écologie des principales espèces. CSEEL/Ministère de l’Environnement/Ministère de la Mer, Nantes.

    Google Scholar 

  • Elliott, M. & F. Dewailly, 1995. The structure and components of European estuarine fish assemblages. Netherlands Journal of Aquatic Ecology 29(2–3): 397–417.

    Article  Google Scholar 

  • Elliott, M. & K. Hemingway, 2002. Fishes in Estuaries. Blackwells, London, 636 pp.

    Google Scholar 

  • E. U., 2000. Parliament and Council Directive 2000/60/EC of 23rd October 2000. Establishing a framework for community action in the field of water policy. Official Journal PE-CONS 3639/1/00 REV 1, Brussels.

  • Fichez, R., P. Dennis, M. F. Fontaine & T. D. Jickells, 1993. Isotopic and biochemical composition of particulate organic matter in a shallow-water estuary (Great Ouse, North-sea, England). Estuarine Organic Process 43: 263–276.

    CAS  Google Scholar 

  • Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs. Ecology 82: 1052–1064.

    Google Scholar 

  • France, R. L., 1994. Nitrogen isotopic composition of marine and freshwater invertebrates. Marine Ecology Progress Series 115: 205–207.

    Google Scholar 

  • Fry, B., 1988. Food web structure on George bank from stable C, N, and S isotopic compositions. Limnology and Oceanography 33: 1182–1190.

    Article  CAS  Google Scholar 

  • Fry, B. & E. B. Sherr, 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27: 13–47.

    CAS  Google Scholar 

  • Hajisamae, S., L. M. Chou & S. Ibrahim, 2003. Feeding habits and trophic organization of the fish community in shallow waters of an impacted tropical habitat. Estuarine, Coastal and Shelf Science 58: 89–98.

    Article  Google Scholar 

  • Hansson, S., 1998. Methods of studying fish feeding: a comment. Canadian Journal of Fisheries and Aquatic Sciences 55(12): 2706–2707.

    Article  Google Scholar 

  • Hellawell, J. M. & R. Abel, 1971. A rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology 3: 29–37.

    Article  Google Scholar 

  • Henderson, P. A., D. James & R. H. A. Holmes, 1992. Trophic Structure within the Bristol Channel–Seasonality and Stability in Bridgwater Bay. Journal of the Marine Biological Association of the United Kingdom 72: 675–690.

    Google Scholar 

  • Hesslein, R. H., M. J. Capel, D. E. Fox & K. A. Hallard, 1991. Stable isotopes of sulfur, carbon and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie river basin, Canada. Canadian Journal of Fisheries and Aquatic Sciences 48: 1991–2001.

    Google Scholar 

  • Hesslein, R. H., K. A. Hallard & P. Ramlal, 1993. Replacement of sulfur, carbon and nitrogen in tissue of growing broad Whitefish (Coregonus nasus) in response to a change in diet traced by delta 34S, delta 13C and delta 15N. Canadian Journal of Fisheries and Aquatic Sciences 50: 2071–2076.

    Article  CAS  Google Scholar 

  • Hureau, J.-C., 1970. Biologie comparée de quelques poissons antarctiques (Nototheniidae). Bulletin de l’Institut Océanographique de Monaco 68: 139–164.

    Google Scholar 

  • Hynes, H. B. N., 1950. The food of freshwater sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius) with a review of methods used in studies of the food of fishes. Journal of Animal Ecology 19: 36–58.

    Article  Google Scholar 

  • Hyslop, E. J., 1980. Stomach contents analysis––a review of methods and their application. Journal of Fish Biology 17: 411–429.

    Article  Google Scholar 

  • Jassby, A. D. & J. E. Cloern, 2000. Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA). Aquatic conservation–Marine and Freswater Ecosystems 10: 323–352.

    Article  Google Scholar 

  • Jassby, A. D., J. E. Cloern & T. M. Pawell, 1993. Organic-carbon sources and sinks in San-Fransco Bay––variability induced by river flow. Marine Ecology-Progress Series 95: 39–54.

    CAS  Google Scholar 

  • Kavanagh, P., N. Newlands, V. Christensen & D. Paul, 2004. Automated parameter optimization for Ecopath ecosystem models. Ecological Modelling 172: 141–149.

    Article  Google Scholar 

  • Kharlamenko, V. I., N. V. Zhukova, S. V. Khotimchenko, V. I. Svetashev & G. M. Kamenev, 1995. Fatty acids as makers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series 120: 231–241.

    CAS  Google Scholar 

  • Kling, G. W., B. Fry & W. J. O’Brien, 1992. Stable isotopes and planktonic structure in Arctic lakes. Ecology 73: 561–566.

    Article  Google Scholar 

  • Kwak, T. & J. B. Zedler, 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110: 262–277.

    Article  Google Scholar 

  • Lesage, V., M. O. Hammill & K. M. Kovacs, 2001. Marine mammals and the community structure of the estuary and Gulf of St Lawrence, Canada: Evidence from stable isotope analysis. Marine Ecology Progress Series 210: 203–221.

    CAS  Google Scholar 

  • Lewis, W. M., S. K. Hamilton, M. A. Rodriguez, J. F. Saunders & M. A. Lasi, 2001. Food web analysis of the Orinoco floodplain based on production estimates and stable isotope data. Journal of the North American Benthological Society 202: 241–254.

    Article  Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • Livingston, R. J., 2002. Trophic organization in coastal systems, CRC Press.

  • Lobry, J., L. Mourand, E. Rochard & P. Elie, 2003. Structure of the Gironde estuarine fish assemblages: a European estuaries comparison perspective. Aquatic Living Resources 16(2): 47–58.

    Article  Google Scholar 

  • Lobry, J., 2004. “Quel référentiel de fonctionnement pour les écosystèmes estuariens ? “––Le cas des cortèges de poissons fréquentant l’estuaire de la Gironde. PhD thesis, Univerity of Bordeaux I, 204 pp.

  • Maberly, S. C., J. A. Raven & A. M. Johnston, 1992. Discrimination between 12C and 13C by marine plants. Oecologia 91: 481–492.

    Article  Google Scholar 

  • Marshall, S., 1995. The structure and the functioning of the fish assemblage of the Humber estuary, UK. PhD Thesis, University of Hull, UK.

  • Marshall, S. & M. Elliot, 1997. A comparison of univariate and multivariate numerical and graphical techniques for determining inter- and intraspecific feeding relationships in estuarine fish. Journal of Fish Biology 51: 526–545.

    Article  Google Scholar 

  • McLusky, D. S. & M. Elliott, 2004. The Estuarine Ecosystem: ecology, threats and management. Oxford University Press, Oxford.

    Google Scholar 

  • Meziane, T., L. Bodineau, C. Retere & G. Thoumelin, 1997. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. Journal of Sea Research 38: 47–58.

    Article  Google Scholar 

  • Michener, R. H. & D. M. Schell, 1994. Stable isotope ratios as tracers in marine aquatic food webs. In Ladjtha, K. & R. H. Michener (eds), Stable isotopes in ecology and environmental science. Blackwell, 138–157.

  • Minagawa, M. & E. Wada , 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.

    Article  CAS  Google Scholar 

  • Monaco, M. E. & R. E. Ulanowicz, 1997. Comparative ecosystem trophic structure of three US mid- Atlantic estuaries. Marine Ecology-Progress Series 161: 239–254.

    Google Scholar 

  • Mouny, P., 1998. Structure spatio-temporelle du zooplancton et du supra benthos de l’estuaire de la Seine. Dynamique et rôle des principales espèces dans la chaîne trophique pélagique. PhD Thesis, University of Paris: Museum National d’Histoire Naturelle, 239 pp.

  • Napolitano, G. E., R. J. Pollero, A. M. Gayoso, B. A. MacDonald & R. J. Thompson, 1997. Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25: 739–755.

    Article  CAS  Google Scholar 

  • Nichols, P. D., R. B. Johns & D. W. Klump, 1982. Study of food chains in seagrass communities, 1. Lipid components of the seagrasses Posidonia australis and Heterozostera tasmanica as indicators of carbon source. Phytochemistry 21: 1613–1621.

    Article  CAS  Google Scholar 

  • Odum, E. P., 1953. Fundamentals of ecology. W. B. Saunders Company, Philadelphia, PA, 384 pp.

    Google Scholar 

  • Pasquaud, S., M. Girardin & P. Elie, 2004. Etude du régime alimentaire des gobies du genre Pomatoschistus (P. microps et P. minutus) dans l’estuaire de la Gironde (France). Cybium 28(1): 99–106.

    Google Scholar 

  • Paterson, A. W. & A. K. Whitfield, 1997. A stable carbon isotope study of the food web in a freshwater-deprived South African estuary, with particular emphasis on the ichthyofauna. Estuarine, Coastal and Shelf Science 45: 705–715.

    Article  Google Scholar 

  • Perissinotto, R., C. Nozais, I. Kibirige & A. Anandraj, 2003. Planktonic food webs and benthic-pelagic coupling in three South African temporarily-open estuaries. Acta Oecologica 24: S307–S316.

    Article  Google Scholar 

  • Perga, M. E., 2004. Origines et flux de carbone dans les réseaux trophiques lacustres: Etude par analyse de la composition en isotopes stables du carbone et de l’azote du zooplancton et des poissons. PhD Thesis, Université de Savoie, 198 pp.

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Peterson, B. J., R. W. Howarth & R. H. Garritt, 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227: 1361–1363.

    Article  PubMed  CAS  Google Scholar 

  • Petitgas, P., 2002. Modelling in fisheries assessments. In Petitgas, P. (ed.), ICES Cooperative Research Report, 16–23.

  • Pillay, T. V. R., 1952. A critique of the methods of study of food of fishes. Journal of the Zoological Society of India 4: 185–200.

    Google Scholar 

  • Platt, T. & K. Denman, 1978. The structure of pelagic marine ecosystems. Rapports et procès-verbaux des réunions CIEM 173: 60–65.

    Google Scholar 

  • Polovina, J. J., 1984. Model of a coral reef ecosystem. The Ecopath model and its application to French Frigate Shoals. Coral Reefs 3:1–11.

    Article  Google Scholar 

  • Potts, G. W. & P. J. Reay, 1987. Fish. In Baker, J. & W. Wolff (eds), Biological Surveys of Coasts and estuaries. Cambridge University Press, Cambridge, 342–373.

    Google Scholar 

  • Rajendran, N., Y. Suwa & Y. Urushigawa, 1993. Distribution of phospholipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay, Japan. Marine Chemistry 42: 39–56.

    Article  CAS  Google Scholar 

  • Riera, P., L. J. Stal & J. Nieuwenhuize, 2000. Heavy δ15N in intertidal benthic algae and invertebrates in the Scheldt estuary (The Netherlands): Effect of river nitrogen inputs. Estuarine, Coastal and Shelf Science 51: 365–372.

    Article  CAS  Google Scholar 

  • Ruesink, J., G. C. Roegner, B. R. Dumbauld, J. A. Newton & D. A. Armstrong, 2003. Contributions of coastal and watershed energy sources to secondary production in a Northeastern Pacific estuary. Estuaries 26: 1079–1093.

    Google Scholar 

  • Rybarczyk, H. & B. Elkaim, 2003. An analysis of the trophic network of a macrotidal estuary: the Seine Estuary (Eastern Channel, Normandy, France). Estuarine, Coastal and Shelf Science 58: 775–791.

    Article  Google Scholar 

  • Saliot, A., J. C. Marty, P. Scribe, M. A. Sicre, T. C. Viets, J. W. Deleeuw, P. A. Schenck & J. J. Boon, 1991. Characterization of particulate organic matter in mediterranean sea-surface films and underlying water by flash pyrolysis and gas-chromatographic analyses. Organic Geochemistry 17: 329–340.

    Article  CAS  Google Scholar 

  • Sargent, J. H. & K. J. Whittle, 1981. Lipids and hydrocarbons in the marine food web. In Longhurst, A. (ed.), Analysis of Marine Ecosystems. Academic Press, New York, 491–533.

    Google Scholar 

  • Sargent, J. R., 1976. The structure, metabolism and function of lipids in marine organisms. In Malins, D. & J. R. Sargent (eds), Biochemical and Biophysical Perspectives in Marine Biology. Academic Press, New York, 149–212.

    Google Scholar 

  • Shi, W., M. Y. Sun, M. Molina & R. E. Hodson, 2001. Variability in the distribution of lipid biomarkers and their molecular isotopic composition in Altamaha estuarine sediments: implications for the relative contribution of organic matter from various sources. Organic Geochemistry 32: 453–467.

    Article  CAS  Google Scholar 

  • Shin, Y. J., 2000. Interactions trophiques et dynamiques des populations dans les écosystèmes marins exploités. Approche par modélisation individus-centrée. PhD thesis, Université de Paris VII, 245 pp.

  • Sorbe, J. C., 1983. Les décapodes natantia de l’estuaire de la Gironde (France). Contribution à l’étude morphologique et biologique de Palaemon longirostris. H. Milne Edwards, 1837. Crustaceana 44(3): 251–270.

    Article  Google Scholar 

  • Strange, C. D. & G. J. A. Kennedy, 1981. Stomach flushing of salmonids: a simple and effective technique for the removal of the stomach contents. Fisheries Management 12: 9–16.

    Google Scholar 

  • Swynnerton, G. H. & E. B. Worthington, 1940. Note on the food of fish in Haweswater (Westmorland). Journal of Animal Ecology 9(2): 183–188.

    Article  Google Scholar 

  • Thoumelin, G., L. Bodineau & M. Wartel, 1997. Origin and transport of organic matter across the Seine estuary: fatty acids and sterol variations. Marine Chemistry 58: 59–71.

    Article  CAS  Google Scholar 

  • Ulanowicz, R. E., 1986. Growth and development. Ecosystems phenomenology Springer, Verlag, New York.

    Google Scholar 

  • Ulanowicz, R. E., 1993. Inventing the Ecoscope. In Christensen, V. & D. Pauly (eds), Trophic models of aquatic ecosystems. Manille, Philippines: ICLARM, ix-x.

  • Van der Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80: 1395–1404.

    Article  Google Scholar 

  • Vézina, A. F., 1989. Construction of low networks using inverse methods. In Wulff, F. & J. G. Field (eds), Network analysis in marine ecology, Methods and applications, Coastal and Marine studies. Springer-Verlag, Berlin, 62–81.

    Google Scholar 

  • Vézina, A. F. & M. L. Pace, 1994. An inverse model analysis of planktonic food webs in experimental lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 2034–2044.

    Google Scholar 

  • Vézina, A. F. & T. Platt, 1988. Food web dynamics in the ocean. I best estimates using inverse methods. Marine Ecology Progress Series 42: 269–287.

    Google Scholar 

  • Volkman, J. K., R. B. Johns, F. T. Gillan & G. J. Perry, 1980. Microbial lipids of an intertidal sediment, I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44: 1133–1143.

    Article  CAS  Google Scholar 

  • Wada, E., H. Mizutani & M. Minagawa, 1991. The use of stable isotopes for food web analysis. Critical Reviews in Food Science and Nutrition 30: 361–371.

    Article  PubMed  CAS  Google Scholar 

  • Wada, E., M. Terazaki, Y. Kabaya & T. Nemoto, 1987. 15N and 13C abundances in the Antartic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Research 34: 829–841.

    Article  CAS  Google Scholar 

  • West, J. M., G. D. Williams, S. P. Madon & J. B. Zedler, 2003. Integrating spatial and temporal variability into the analysis of fish food web linkages in Tijuana Estuary. Environmental Biology of Fishes 67: 297–309.

    Article  Google Scholar 

  • Whipple, S. J., J. S. Link, L. P. Garrison & M. J. Fogarty, 2000. Models of predation and fishing mortality in aquatic ecosystems. Fish and Fisheries 1: 22–40.

    Article  Google Scholar 

  • Windell, J. & S. Bowen, 1968. Methods for study of fish diets based on analysis of stomach contents. In Ricker, W. E. (ed.), Methods for assessment of fish production in fresh waters 3rd edn. Blackwell, Oxford, 219–226.

    Google Scholar 

  • Wolff, M., V. Koch & V. Isaac, 2000. A trophic flow model of the caeté mangrove estuary (north brazil) with considerations for the sustainable use of its resources. Estuarine, Coastal and Shelf Science 50: 789–803.

    Article  Google Scholar 

  • Wootton, R. J., 1990. Ecology of Teleost Fishes. Fish and Fisheries Series 1, Chapman & Hall, London.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank their colleagues of the Cemagref, Michel Girardin and Mario Lepage, for their advices and their support. They would particularly thank Isabelle Ortusi and Prof. Mike Elliott (University of Hull, U.K.) for checking the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Pasquaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquaud, S., Lobry, J. & Elie, P. Facing the necessity of describing estuarine ecosystems: a review of food web ecology study techniques. Hydrobiologia 588, 159–172 (2007). https://doi.org/10.1007/s10750-007-0660-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0660-3

Keywords

Navigation