Skip to main content
Log in

Nutrient limitation in a tropical saline lake: a microcosm experiment

  • SALT LAKE RESEARCH
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

There is increasing evidence that nitrogen limitation is of widespread occurrence in tropical lakes. Nonetheless, data on the deep tropical Lake Alchichica (Mexico) show that dissolved inorganic nitrogen (DIN) to soluble reactive phosphorus (SRP) ratio fluctuates widely. To elucidate further the role of nitrogen and phosphorus limitation on the phytoplankton growth in tropical saline lakes, we present the results of a series of nutrient enrichment experiments with natural assemblages of Lake Alchichica phytoplankton conducted monthly for a year. Our assays indicate that phosphorus and nitrogen alternate in limiting Lake Alchichica phytoplankton biomass. Phosphorous limited phytoplankton growth most (41.7%) of the time, followed by nitrogen (33.3% of the time), and both nutrients for the rest of the time (25.0%). This alternation in nitrogen and phosphorus responsible for phytoplankton growth limitation in Lake Alchichica is attributed to the combination of natural conditions (e.g., young volcanic terrain rich in phosphorus) that would favor nitrogen limitation and anthropogenic impacts (e.g., agricultural nitrogen fertilization) which would cause phosphorus limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adame, M. F., J. Alcocer & E. Escobar, 2008. Size-fractionated phytoplankton biomass and its implications for the dynamics of an oligotrophic tropical lake. Freshwater Biology 53: 22–31. doi: 10.1111/j.1365-2427.01864.x

    Google Scholar 

  • Alcocer, J. & F. W. Bernal-Brooks, 2002. Spatial and temporal heterogeneity of physical and chemical variables for an endorheic, shallow water body: Lake Pátzcuaro, Mexico. Archiv für Hydrobiologie 155: 239–253.

    Google Scholar 

  • Alcocer, J. & U. T. Hammer, 1998. Saline lake ecosystems of Mexico. Aquatic Ecosystem Health and Management 1(3–4): 291–315.

    Article  Google Scholar 

  • Alcocer, J. & A. Lugo, 2003. Effects of El Niño on the dynamics of Lake Alchichica, Central Mexico. Geofísica Internacional 42: 523–528.

    Google Scholar 

  • Alcocer, J., A. Lugo, E. Escobar, M. R. Sánchez & G. Vilaclara, 2000. Water column stratification and its implications in the tropical warm monomictic Lake Alchichica, Puebla, Mexico. Verhandlungen Internationalis Vereinigung Limnologiae 27: 3166–3169.

    Google Scholar 

  • Bernal-Brooks, F. W., L. Dávalos-Lind & O. T. Lind, 2002. Assessing trophic state of an endorheic tropical lake: the algal growth potential and limiting nutrients. Archiv für Hydrobiologie 153: 323–338.

    CAS  Google Scholar 

  • Bernal-Brooks, F. W., L. Dávalos-Lind & O. T. Lind, 2003. Seasonal and spatial variations in algal growth potential and growth-limiting nutrients in a shallow endorheic lake: Lake Pátzcuaro (Mexico). Lakes & Reservoirs: Research and Management 8: 83–93.

    Article  CAS  Google Scholar 

  • Carignan, R. & D. Planas, 1994. Recognition of nutrient and light limitation in turbid mixed layers: three approaches compared in Paran floodplain (Argentina). Limnology and Oceanography 39: 580–596.

    Article  CAS  Google Scholar 

  • Dávalos, L., O. Lind & R. D. Doyle, 1989. Evaluation of phytoplankton-limiting factors in lake Chapala, Mexico: turbidity and spatial and temporal variations in algal assay response. Lake and Reservoirs Management 5: 99–104.

    Article  Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwater of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences 47: 1468–1477.

    Article  CAS  Google Scholar 

  • Engström-Öst, J., M. Koski, K. Schmidt, M. Viitasalo, S. H. Jónasdóttir, M. Kokkonen, S. Repka & K. Sivonen, 2002. Effects of toxic cyanobacteria on a plankton assemblage: community development during decay of Nodularia spumigena. Marine Ecology Progress Series 232: 1–14.

    Article  Google Scholar 

  • Falcón, L. I., E. Escobar & D. Romero, 2002. Nitrogen fixation patterns displayed by cyanobacteria consortia in Alchichica crater-lake, Mexico. Hydrobiologia 467: 71–78.

    Article  Google Scholar 

  • Filonov, A., I. Tereshchenko & J. Alcocer, 2006. Dynamic response to mountain breeze circulation in Alchichica, a crater lake in Mexico. Geophysical Research Letters 33: L07404.

    Article  Google Scholar 

  • Kirkwood, D. S., 1994. Sanplus segmented flow analyzer and its applications. Seawater analysis. Skalar. 51 pp.

  • García, E., 1988. Modificaciones al Sistema de Clasificación Climática de Köppen (Para Adaptarlo a las Condiciones de la República Mexicana). García, México: 217.

    Google Scholar 

  • Gasca, A., 1981. Algunas notas de la génesis de los lagos-cráter de la cuenca de Oriental. Puebla-Tlaxcala-Veracruz, Departamento de Prehistoria, Instituto Nacional de Antropología e Historia, Colección Científica 21Prehistoria 98, México, 55 pp.

  • Hernández-Avilés, J. S., F. Bernal-Brooks, G. Velarde, D. Ortíz, O. T. Lind & L. Dávalos-Lind, 2001. The algal growth potential and algae growth-limiting nutrients for 30 of Mexico’s lakes and reservoirs. Verhandlungen Internationalis Vereinigung Limnologiae 27: 3583–3588.

    Google Scholar 

  • Horne, A. J. & D. L. Galat, 1985. Nitrogen fixation in an oligotrophic, saline desert lake: Pyramid Lake, Nevada. Limnology & Oceanography 30: 1229–1239.

    CAS  Google Scholar 

  • Jellison, R. & J. M. Melack, 2001. Nitrogen limitation and particulate elemental ratios of seston in hypersaline Mono Lake, California, USA. Hydrobiologia 466: 1–12.

    Article  CAS  Google Scholar 

  • Kononen, K., J. Kuparinen, K. Mäkelä, J. Laanemets, J. Pavelson & S. NÕmmann, 1996. Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnology & Oceanography 41: 98–112.

    CAS  Google Scholar 

  • Lewis, W. M., 1996. Tropical lakes: how latitude makes a difference. In Schiemer, F. & K. T. Boland (eds), Perspectives in Tropical Limnology. SPB, Amsterdam: 43–64.

    Google Scholar 

  • Lewis, W. M., 2002. Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen Internationalis Vereinigung Limnologiae 28: 210–213.

    Google Scholar 

  • López López, E. & L. Dávalos-Lind, 1998. Algal growth potential and nutrient limitation in a tropical river—reservoir system of the Central Plateau, Mexico. Aquatic Ecosystem Health and Management 1: 345–351.

    Article  Google Scholar 

  • Lugo, A., M. E. González, M. del R. Sánchez & J. Alcocer, 1999. Distribution of Leptodiaptomus novamexicanus (Copepoda: Calanoidea) in a Mexican hyposaline lake. Revista de Biología Tropical 17: 145–152.

    Google Scholar 

  • Moss, B., 1969. Limitation of algal growth in some Central African waters. Limnology and Oceanography 14: 591–601.

    Google Scholar 

  • Oliva, M. G., A. Lugo, J. Alcocer, L. Peralta & M. R. Sánchez, 2001. Phytoplankton dynamics in a deep, tropical, hyposaline lake. Hydrobiologia 466: 299–306.

    Article  CAS  Google Scholar 

  • Reyes, M., 1979, Geología de la cuenca de Oriental. Estados de Puebla, Veracruz y Tlaxcala, Departamento de Prehistoria, Instituto Nacional de Antropología e Historia, Colección Científica Prehistoria 71, México, 62 pp.

  • Sánchez, R., 2006, Dinámica vertical y temporal de los nutrimentos (N, P, Si) en un lago monomíctico cálido tropical: Alchichica, Puebla, México. Master in Marine Sciences and Limnology thesis, UNAM, Mexico, 105 pp.

  • Smetacek, V. & U. Passow, 1990. Spring bloom initiation and Sverdrup’s critical-depth model. Limnology & Oceanography 35: 228–234.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin of Fisheries Research Board of Canada 167: 1–311.

    Google Scholar 

  • Talling, J. F. & T. B. Talling, 1965. The chemical composition of African lake waters. Internationale Revue ges Hydrobiologie 50: 421–463.

    Article  Google Scholar 

  • Talling, J. F. & J. Lemoalle, 1998. Ecological dynamics of tropical waters. Cambridge University Press, Cambridge.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1978. The Selenastrum capricornutum Printz algal assay bottle test: experimental design, application, and data interpretation protocol. EPA-600/9-78-018. Corvallis Environmental Research Laboratory, Corvallis.

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereinigung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vilaclara, G., M. Chávez, A. Lugo, H. González & M. Gaytán, 1993. Comparative description of crater-lakes basic chemistry in Puebla State, Mexico. Verhandlungen Internationalis Vereinigung Limnologiae 25: 435–440.

    CAS  Google Scholar 

  • Webster, K. E., P. A. Soranno, S. B. Baines, T. K. Kratz, C. J. Bowser, P. J. Dillon, P. L. Campbell, E. J. Fee & R. E. Hecky, 2000. Structuring features of lake districts: landscape controls of lake chemical responses to drought. Freshwater Biology 43: 499–515.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was partially supported by Consejo Nacional de Ciencia y Tecnología grant 41667 to JA. The authors thank Erik Ramos (Programa de PCMyL, UNAM) for field and laboratory assistance, Laura Peralta (FES Iztacala, UNAM) for field support, Sergio Castillo (ICMyL, UNAM) for nutrient analysis, and Luis A. Oseguera (FES Iztacala, UNAM) for field and desk support. The authors acknowledge Rosa Luz Tavera (Facultad de Ciencias, UNAM), Miroslav Macek (FES Iztacala, UNAM), and Fernando W. Bernal-Brooks (INIRENA, UMSNH) for helpful suggestions and comments on the planning of this investigation. M.A. Ramírez-Olvera thanks Posgrado en Ciencias Biológicas (UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Alcocer.

Additional information

Guest Editors: J. John & B. Timms

Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-Olvera, M.A., Alcocer, J., Merino-Ibarra, M. et al. Nutrient limitation in a tropical saline lake: a microcosm experiment. Hydrobiologia 626, 5–13 (2009). https://doi.org/10.1007/s10750-009-9733-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9733-9

Keywords

Navigation