Skip to main content
Log in

The ecology of freshwater wrack along natural and engineered Hudson River shorelines

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Organic matter that is washed onto shore, or “wrack,” is an important component of shoreline ecosystems, providing habitat for macroinvertebrates and organic matter and nutrients to both the upland terrestrial communities and aquatic ecosystems. While marine wrack has been studied extensively, wrack along freshwater shorelines has received less attention. In this article, we report on the standing stocks, mobility, decomposition rates, and macroinvertebrate communities of wrack on different types of Hudson River shorelines (natural: sand, rock, bedrock; and engineered: riprap, cribbing, and bulkhead). Standing stocks of wrack sometimes exceeded 1 kg dry mass/m2, and were the highest on shorelines having flat slopes. Artificial wrack (hay) placed below the high tide mark was rarely retained for more than a few tidal cycles, particularly on highly exposed shores. Wrack on cribbing shorelines decayed significantly faster than on other shoreline types. Macroinvertebrate abundance and diversity were significantly different among shoreline types, with the lowest abundance found on cribbing, along with significantly lower diversity. Consequently, if managers use structures such as cribbing and bulkheads to rebuild or reinforce shorelines, then certain ecological functions may be lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Backlund, H. O., 1945. Wrack fauna of Sweden and Finland: ecology and chorology. Opuscula Entomologica Supplementum. Oy Tilgmann Ab, Helsingfors.

  • Bänziger, R., 1995. A comparative study of the zoobenthos of eight land-water interfaces (Lake of Geneva). Hydrobiologia 300(301): 133–140.

    Article  Google Scholar 

  • Bianchi, T. S. & S. E. G. Findlay, 1991. Decomposition of Hudson estuary macrophytes: photosynthetic pigment transformations and decay constants. Estuaries 14: 65–73.

    Article  CAS  Google Scholar 

  • Brown, A. C. & A. McLachlan, 2002. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environmental Conservation 29: 62–77.

    Article  Google Scholar 

  • Chapman, M. G. & D. J. Blockley, 2009. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia 161: 625–635.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, M. G. & F. Bulleri, 2003. Intertidal seawalls – new features of the landscape in intertidal environments. Landscape Urban Planning 62: 159–172.

    Article  Google Scholar 

  • Colombini, I. & L. Chelazzi, 2003. Influence of marine allochthonous input on sandy beach communities. Oceanography and Marine Biology, An Annual Review 41: 115–159.

    Google Scholar 

  • Dugan, J. E., D. M. Hubbard, M. D. McCrary & M. O. Pierson, 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine, Coastal and Shelf Science 58S: 25–40.

    Article  Google Scholar 

  • Geyer, W. R. & R. Chant, 2006. The physical oceanography processes in the Hudson River Estuary. In Levinton, J. S. & J. R. Waldman (eds), The Hudson River Estuary. Cambridge University Press, New York: 24–38.

    Chapter  Google Scholar 

  • Gotelli, N. J. & G. R. Graves, 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones III, 1998. Stream biodiversity: the ghost of land use past. Proceedings of the National Academy of Science 95: 14843–14847.

    Article  CAS  Google Scholar 

  • Jedrzejczak, M. F., 2002. Stranded Zostera marina L. vs wrack fauna community interaction on a Baltic sandy beach: a short-term pilot study. Part 1. Driftline effects of fragmented detritivory, leaching and decay rates. Oceanologia 44: 273–286.

    Google Scholar 

  • Klein, R. J. T., R. J. Nicholls, S. Ragoonaden, M. Capobianco, J. Aston & E. N. Buckley, 2001. Technological options for adaptation to climate change in coastal zones. Journal of Coastal Research 17: 531–543.

    Google Scholar 

  • Kornijow, R., D. L. Strayer & N. F. Caraco, 2010. Macroinvertebrate communities of hypoxic habitats created by an invasive plant (Trapa natans) in the freshwater tidal Hudson River. Fundamental and Applied Limnology 176: 199–207.

    Article  Google Scholar 

  • Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.

    Article  Google Scholar 

  • Llewellyn, P. J. & S. E. Schackley, 1996. The effects of mechanical beach-cleaning on invertebrate populations. British Wildlife 7: 147–155.

    Google Scholar 

  • Malm, T., S. Raberg, S. Fell & P. Carlsson, 2004. Effects of beach cast cleaning on beach quality, microbial food web, and littoral macrofaunal biodiversity. Estuarine, Coastal and Shelf Science 60: 339–347.

    Article  CAS  Google Scholar 

  • McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MJM Software, Gleneden Beach, OR.

    Google Scholar 

  • Miller, D., 2005. Shoreline Inventory of the Hudson River. Hudson River National Estuarine Research Reserve, Department of Environmental Conservation.

  • Moreira, J., M. G. Chapman & A. J. Underwood, 2006. Seawalls do not sustain viable populations of limpets. Marine Ecology Progress Service 322: 179–188.

    Article  Google Scholar 

  • Morgan, R. P. & S. F. Cushman, 2005. Urbanization effects on stream fish assemblages in Maryland, USA. Journal of the North American Benthological Society 24: 643–655.

    Google Scholar 

  • Moschella, P. S., M. Abbiati, P. Aberg, L. Airoldi, J. M. Anderson, F. Bacchiocchi, F. Bulleri, G. E. Dinesen, M. Frost, E. Gacia, L. Granhag, P. R. Jonsson, M. P. Satta, A. Sundelof, R. C. Thompson & S. J. Hawkins, 2005. Low-crested coastal defense structures as artificial habitats for marine life: using ecological criteria in design. Coastal Engineering 52: 1053–1071.

    Article  Google Scholar 

  • National Research Council, 2007. Mitigating Shore Erosion Along Sheltered Coasts. The National Academies Press, Washington, D.C.

    Google Scholar 

  • New York State Sea Level Rise Task Force Report, Submitted December 31, 2010 to the New York State Legislature. http://www.dec.ny.gov/energy/67778.html. Accessed 15 January 2011.

  • NOAA tide predictions, 2013. http://tidesandcurrents.noaa.gov/tide_predictions.shtml?gid=62. Last accessed 29 July 2013.

  • Orr, M., M. Zimmer, D. E. Jelinski & M. Mews, 2005. Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86: 1496–1507.

    Article  Google Scholar 

  • Petersen, I., Z. Masters, A. G. Hildrew & S. J. Ormerod, 2004. Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology 41(5): 934–950.

    Article  Google Scholar 

  • Polis, G. A. & S. D. Hurd, 1996. Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147: 396–423.

    Article  Google Scholar 

  • Polis, G. A., F. Sánchez-Piñero, P. T. Stapp, W. B. Anderson & M. D. Rose, 2004. Trophic flows from water to land: marine input affects food webs of islands and coastal ecosystems worldwide. In Polis, G. A., M. E. Power & G. R. Huxel (eds), Food Webs at the Landscape Level. University of Chicago Press, Chicago: 200–216.

    Google Scholar 

  • Romanuk, T. N. & C. D. Levings, 2003. Associations between arthropods and the supralittoral ecotone: dependence of aquatic and terrestrial taxa on riparian vegetation. Environmental Entomology 32: 1343–1354.

    Article  Google Scholar 

  • Sawyer, J. A., P. M. Stewart, M. M. Mullen, T. P. Simon & H. H. Bennett, 2004. Influence of habitat, water quality, and land use on macroinvertebrate and fish assemblages of a southeastern coastal plain watershed, USA. Aquatic Ecosystem Health 7: 85–99.

    Article  Google Scholar 

  • Squires, D. F., 1992. Quantifying anthropogenic shoreline modification of the Hudson River and estuary from European contact to modern times. Coastal Management 20: 343–354.

    Article  Google Scholar 

  • Strayer, D. L. & S. E. G. Findlay, 2010. Ecology of freshwater shore zones. Aquatic Sciences 72: 127–163.

    Article  CAS  Google Scholar 

  • Strayer, D. L. & H. M. Malcom, 2007. Submersed vegetation as habitat for invertebrates in the Hudson River estuary. Estuaries and Coasts 30: 253–264.

    Google Scholar 

  • Strayer, D. L., C. Lutz, H. M. Malcom, K. Munger & W. H. Shaw, 2003. Invertebrate communities associated with a native (Vallisneria americana) and an alien (Trapa natans) macrophyte in a large river. Freshwater Biology 48: 1938–1949.

    Article  Google Scholar 

  • Strayer, D. L., S. E. G. Findlay, D. M. Miller, H. M. Malcom, D. T. Fischer & T. Coote, 2012. Biodiversity in Hudson River shores zones: influence of shoreline type and physical structure. Aquatic Sciences 74: 597–610.

    Article  Google Scholar 

  • Thompson, R. C., T. P. Crowe & S. J. Hawkins, 2002. Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environmental Conservation 29: 168–191.

    Article  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency), 2004. Wadeable Stream Assessment: Field Operations Manual EPA 841-B-04-004. U.S. Environmental Protection Agency, Office of Water and Office of Research and Development, Washington, D.C.: 106 pp.

  • Way, C. M., A. J. Burky, C. R. Bingham & A. C. Miller, 1995. Substrate roughness, velocity refuges, and macroinvertebrate abundance on artificial substrates in the lower Mississippi River. Journal of the North American Benthological Society 14: 510–518.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Fanny Chauvière, Heather Malcom, David Fischer, Gary Kleppel, and Zara Dowling for their technical help and advice. Financial support was provided by the Hudson River Foundation, its Polgar Fellowship program, and through a grant from the Cooperative Institute of Coastal and Estuarine Environmental Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Harris.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, C., Strayer, D.L. & Findlay, S. The ecology of freshwater wrack along natural and engineered Hudson River shorelines. Hydrobiologia 722, 233–245 (2014). https://doi.org/10.1007/s10750-013-1706-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1706-3

Keywords

Navigation