Skip to main content

Advertisement

Log in

Bryophyte communities of Mediterranean Europe: a first approach to model their potential distribution in highly seasonal rivers

  • PLANTS IN AQUATIC SYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mediterranean watercourses are among the most threatened ecosystems worldwide, being increasingly important to understand environmental drivers of biotic assemblages. Our aim was to provide a comprehensive picture of bryophyte communities in Mediterranean rivers and to determine the environmental factors that influence their distribution. We used floristic data collected for inter-calibration purposes under the European Water Framework Directive and River Habitat Survey, from 474 river reaches in six countries of the European Mediterranean basin. We analysed data through classification, ordination and environmental niche modelling techniques, and classified taxa according to biogeographic and aquatic habitat frameworks developed specifically for bryophytes. These analyses revealed four types of communities influenced by spatio-temporal precipitation patterns, altitude and water chemistry factors, most notably calcium and manganese. Community types are compositionally differentiated, although they share some core taxa and show an overall tendency to have several temperate and exclusively aquatic taxa despite the intermittent nature of water flow in highly seasonal Mediterranean rivers. The modelling approach can be improved at a more local scale when more bryological data and higher-resolution environmental information become available. Given future scenarios of climate change and human alteration of hydrological regimes, broader scales studies are needed to monitor shifts in bryophyte communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar, F. C., M. T. Ferreira, A. Albuquerque & I. Moreira, 2007. Alien and endemic flora at reference and non-reference sites in Mediterranean-type streams in Portugal. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 335–347.

    Article  Google Scholar 

  • Aguiar, F., M. T. Ferreira & P. Rodriguez-González, 2008. Tipologia ripícola de sistemas fluviais portugueses. Tecnologia da Água 3: 30–38.

    Google Scholar 

  • Aguiar, F., P. Segurado, G. Urbanič, J. Cambra, C. Chauvin, S. Ciadamidaro, G. Dörflinger, J. Ferreira, M. Germ & P. Manolaki, 2014. Comparability of river quality assessment using macrophytes: a multi-step procedure to overcome biogeographical differences. Science of The Total Environment 476: 757–767.

    Article  PubMed  Google Scholar 

  • Barbet-Massin, M., F. Jiguet, C. H. Albert & W. Thuiller, 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327–338.

    Article  Google Scholar 

  • Birk, S., N. Willby, C. Chauvin, H. C. Coops, L. Denys, D. Galoux, A. Kolada, K. Pall, I. Pardo, R. Pot & D. Stelzer, 2007. Report on the central Baltic river GIG macrophyte intercalibration exercise. Report of the European Commission, JRC. 82 pp.

  • Bischler, H., 2004. Liverworts of the Mediterranean. J. Cramer.

  • Blondel, J., J. Aronson, J.-Y. Bodiou & G. Boeuf, 2010. The Mediterranean Region. Biological Diversity in Space and Time. Oxford University, Oxford.

    Google Scholar 

  • Blumler, M. A., 2005. Three conflated definitions of mediterranean climates. Middle States Geographer 38: 52–60.

    Google Scholar 

  • Bonada, N. & V. H. Resh, 2013. Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719: 1–29.

    Article  Google Scholar 

  • Bonada, N., M. Rieradevall, N. Prat & V. H. Resh, 2006. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. Journal of the North American Benthological Society 25: 32–43.

    Article  Google Scholar 

  • Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.

    Article  Google Scholar 

  • Bonada, N., M. Rieradevall, H. Dallas, J. Davis, J. Day, R. Figueroa, V. H. Resh & N. Prat, 2008. Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biology 53: 772–788.

    Article  Google Scholar 

  • Bruno, D., O. Belmar, D. Sanchez-Fernandez, S. Guareschi, A. Millan & J. Velasco, 2014. Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecological Indicators 45: 456–464.

    Article  Google Scholar 

  • Caines, L. A., A. W. Watt & D. E. Wells, 1985. The uptake and release of some trace metals by aquatic bryophytes in acidified waters in Scotland. Environmental Pollution Series B: Chemical and Physical 10: 1–18.

    Article  CAS  Google Scholar 

  • Cesa, M., 2010. The use of aquatic mosses and spectrophotometry to monitor trace element pollution in Italy. Spectroscopy Europe 22: 6–8.

    CAS  Google Scholar 

  • Cesa, M., A. Bizzotto, C. Ferraro, F. Fumagalli & P. L. Nimis, 2009. Palladio, an index of trace element alteration for the River Bacchiglione Based on Rhynchostegium riparioides Moss Bags. Water Air and Soil Pollution 208: 59–77.

    Article  Google Scholar 

  • Cesa, M., A. Baldisseri, G. Bertolini, E. Dainese, M. D. Col, U. D. Vecchia, P. Marchesini & P. L. Nimis, 2013. Implementation of an active ‘bryomonitoring’ network for chemical status and temporal trend assessment under the Water Framework Directive in the Chiampo Valley’s tannery district (NE Italy). Journal of Environmental Management 114: 303–315.

    Article  CAS  PubMed  Google Scholar 

  • Ceschin, S., M. Aleffi, S. Bisceglie, V. Savo & V. Zuccarello, 2012. Aquatic bryophytes as ecological indicators of the water quality status in the Tiber River basin (Italy). Ecological Indicators 14: 74–81.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A.-M. Soulsby & M. Boehm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51.

    Article  PubMed  Google Scholar 

  • Comité Européen de Normalisation, 2014. Water quality-guidance for the surveying of aquatic macrophytes in running waters.

  • Cooper, S. D., P. S. Lake, S. Sabater, J. M. Melack & J. L. Sabo, 2013. The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 719: 383–425.

    Article  CAS  Google Scholar 

  • Cowling, R. M., P. W. Rundel, B. B. Lamont, M. Kalin Arroyo & M. Arianoutsou, 1996. Plant diversity in mediterranean-climate regions. Trends in Ecology & Evolution 11: 362–366.

    Article  CAS  Google Scholar 

  • Cruz de Carvalho, R., C. Branquinho & J. Marques da Silva, 2011. Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta 234: 195–205.

    Article  CAS  Google Scholar 

  • Cuttelod, A., N. García, D. A. Malak, H. J. Temple & V. Katariya, 2009. The Mediterranean: a biodiversity hotspot under threat. In Vié, J.-C., C. Hilton-Taylor & S. N. Stuart (eds), The 2008 Review of The IUCN Red List of Threatened Species. IUCN Gland, Switzerland.

    Google Scholar 

  • Dallas, H. F., 2013. Ecological status assessment in mediterranean rivers: complexities and challenges in developing tools for assessing ecological status and defining reference conditions. Hydrobiologia 719: 483–507.

    Article  Google Scholar 

  • Davies, P. & B. Stewart, 2013. Aquatic biodiversity in the Mediterranean climate rivers of southwestern Australia. Hydrobiologia 719: 215–235.

    Article  Google Scholar 

  • Dierssen, K., 2001. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung.

  • Dodkins, I., F. Aguiar, R. Rivaes, A. Albuquerque, P. Rodríguez-González & M. T. Ferreira, 2012a. Measuring ecological change of aquatic macrophytes in Mediterranean rivers. Limnologica Ecology and Management of Inland Waters 42: 95–107.

    Article  CAS  Google Scholar 

  • Dodkins, I. R., F. Aguiar & M. T. Ferreira, 2012b. Can Mediterranean river plants translate into quality assessment systems? Venturing into unexplored territories. In Boon, P. & P. Raven (eds), River Conservation and Management. Wiley, Chichester: 135–142.

    Google Scholar 

  • Düll, R., 1983. Distribution of European and Macaronesian liverworts (Hepaticophytina). Bryologische Beitraege 2: 1–115.

    Google Scholar 

  • Düll, R., 1985. Distribution of European and Macaronesian mosses (Bryophytina). Bryologische Beitraege 5: 110–232.

    Google Scholar 

  • ESRI, 2012. ArcMap 10.1. Environmental Systems Research Institute Inc., Redlands.

    Google Scholar 

  • Feio, M. J., F. C. Aguiar, S. F. P. Almeida, J. Ferreira, M. T. Ferreira, C. Elias, S. R. Q. Serra, A. Buffagni, J. Cambra, C. Chauvin, F. Delmas, G. Dörflinger, S. Erba, N. Flor, M. Ferréol, M. Germ, L. Mancini, P. Manolaki, S. Marcheggiani, M. R. Minciardi, A. Munné, E. Papastergiadou, N. Prat, C. Puccinelli, J. Rosebery, S. Sabater, S. Ciadamidaro, E. Tornés, I. Tziortzis, G. Urbanič & C. Vieira, 2014. Least disturbed condition for European Mediterranean rivers. Science of The Total Environment 476–477: 745–756.

    Article  PubMed  Google Scholar 

  • Ferreira, M. T. & F. C. Aguiar, 2006. Riparian and aquatic vegetation in Mediterranean-type streams (western Iberia). Limnetica 25: 411–424.

    Google Scholar 

  • Ferrier, S. & A. Guisan, 2006. Spatial modelling of biodiversity at the community level. Journal of Applied Ecology 43: 393–404.

    Article  Google Scholar 

  • Ferrier, S., M. Drielsma, G. Manion & G. Watson, 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodiversity and Conservation 11: 2309–2338.

    Article  Google Scholar 

  • Franklin, J., 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gabriel, R. & J. W. Bates, 2005. Bryophyte community composition and habitat specificity in the natural forests of Terceira, Azores. Plant Ecology 177: 125–144.

    Article  Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic Influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Article  Google Scholar 

  • Gecheva, G. & L. Yurukova, 2013. Water pollutant monitoring with aquatic bryophytes: a review. Environmental Chemistry Letters 12: 49–61.

    Article  Google Scholar 

  • Gecheva, G., L. Yurukova, S. Cheshmedjiev & A. Ganeva, 2010. Distribution and bioindication role of aquatic bryophytes in Bulgarian rivers. Biotechnology & Biotechnological Equipment 24: 164–170.

    Article  Google Scholar 

  • Gecheva, G., L. Yurukova & A. Ganeva, 2011. Assessment of pollution with aquatic bryophytes in Maritsa River (Bulgaria). Bulletin of Environmental Contamination and Toxicology 87: 480–485.

    Article  CAS  PubMed  Google Scholar 

  • Gil, J. A. & P. Ruiz, 1985. The aquatic basophilous bryophytic communities of South East Spain. Herzogia 7: 211–228.

    Google Scholar 

  • Glime, J. M., 1971. Response of two species of Fontinalis to field isolation from stream water. The Bryologist 74: 383–386.

    Article  Google Scholar 

  • Glime, J. M. & D. H. Vitt, 1984. The physiological adaptations of aquatic Musci. Lindbergia 10: 41–52.

    Google Scholar 

  • Henderson, P. A. & R. M. H. Seaby, 2006. Species Diversity and Richness v4. Pisces Conservation Ltd., Pennington.

    Google Scholar 

  • Hershkovitz, Y. & A. Gasith, 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia 719: 59–75.

    Article  Google Scholar 

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

    Article  Google Scholar 

  • Hill, M. O., 1979. TWINSPAN: a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University.

    Google Scholar 

  • Hill, M. O., N. Bell, M. A. Bruggeman-Nannenga, M. Brugués, M. J. Cano, J. Enroth, K. I. Flatberg, J. P. Frahm, M. T. Gallego, R. Garilleti, J. Guerra, L. Hedenäs, D. T. Holyoak, M. S. Ignatov, F. Lara, V. Mazimpaka, J. Muñoz & L. Söderström, 2006. An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology 28: 198–267.

    Article  Google Scholar 

  • Holmes, N., 2010. The development and application of the Mean Trophic Rank (MTR). In Hurford, C., M. Schneider & I. Cowx (eds), Conservation Monitoring in Freshwater Habitats: A Practical Guide and Case Studies. Springer, London: 115–124.

    Chapter  Google Scholar 

  • Hooke, J. M., 2006. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 79: 311–335.

    Article  Google Scholar 

  • Hughes, S. J., J. M. Santos, M. T. Ferreira, R. Caraça & A. M. Mendes, 2009. Ecological assessment of an intermittent Mediterranean river using community structure and function: evaluating the role of different organism groups. Freshwater Biology 54: 2383–2400.

    Article  Google Scholar 

  • Kyrkjeeide, M. O., H. K. Stenøien, K. I. Flatberg & K. Hassel, 2014. Glacial refugia and post-glacial colonization patterns in European bryophytes. Lindbergia 37: 47–59.

    Article  Google Scholar 

  • Liu, C., P. M. Berry, T. P. Dawson & R. G. Pearson, 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393.

    Article  Google Scholar 

  • Luís, L., S. J. Hughes & M. Sim-Sim, 2013. Bryofloristic evaluation of the ecological status of Madeiran streams: towards the implementation of the European Water Framework Directive in Macaronesia. Nova Hedwigia 96: 181–204.

    Article  Google Scholar 

  • Magalhães, M. F., D. C. Batalha & M. J. Collares-Pereira, 2002. Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biology 47: 1015–1031.

    Article  Google Scholar 

  • Magalhães, M. F., P. Beja, I. J. Schlosser & M. J. Collares-Pereira, 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshwater Biology 52: 1494–1510.

    Article  Google Scholar 

  • Manel, S., H. C. Williams & S. J. Ormerod, 2001. Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931.

    Article  Google Scholar 

  • Manolaki, P. & E. Papastergiadou, 2013. The impact of environmental factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquatic Botany 104: 34–46.

    Article  Google Scholar 

  • Manolaki, P. & E. Papastergiadou, 2015. Environmental Factors Influencing Macrophytes Assemblages in a Middle‐Sized Mediterranean Stream. River Research and Applications.

  • Manolaki, P., E. Tsakiri & E. Papastergiadou, 2011. Inventory of aquatic and riparian flora of Acheron and Louros rivers, and Zirou lake in Western Greece. Fresenius Environmental Bulletin 20: 861–874.

    CAS  Google Scholar 

  • Markovic, D., S. Carrizo, J. Freyhof, N. Cid, S. Lengyel, M. Scholz, H. Kasperdius & W. Darwall, 2014. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Diversity and Distributions 20: 1097–1107.

    Article  Google Scholar 

  • Marstaller, R., 1987. Die Moosgesellschaften der Klasse Platyhypnidio-Fontinalietea antipyreticae Philippi 1956. Phytocoenologia 15: 85–138.

    Article  Google Scholar 

  • Metzger, M. J., R. G. H. Bunce, R. H. G. Jongman, C. A. Mücher & J. W. Watkins, 2005. A climatic stratification of the environment of Europe. Global Ecology and Biogeography 14: 549–563.

    Article  Google Scholar 

  • Meybeck, M., E. Kuusisto, A. Mäkelä & E. Mälkki, 1996. Water quality. In Bartram, J. & R. Balance (eds), Water Quality Monitoring e a Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. UNEP/WHO, London: 15–36.

    Google Scholar 

  • Munné, A. & N. Prat, 2011. Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecological Indicators 11: 651–662.

    Article  Google Scholar 

  • Muotka, T. & R. Virtanen, 1995. The stream as a habitat templet for bryophytes: species’ distributions along gradients in disturbance and substratum heterogeneity. Freshwater Biology 33: 141–160.

    Article  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Papastergiadou, E., K. Stefanidis, G. Dorflinger, E. Giannouris, K. Kostara & P. Manolaki, 2014. Exploring biodiversity in riparian corridors of a Mediterranean island: plant communities and environmental parameters in Cyprus rivers. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 150: 1–13.

    Google Scholar 

  • Papp, B. & M. Rajcazy, 1998. Investigations on the condition of bryophyte vegetation of mountain streams in Hungary. Journal of the Hattori Botanical Laboratory 84: 81–99.

    Google Scholar 

  • Papp, B., A. Ganeva & R. Natcheva, 2006. Bryophyte vegetation of Iskur River and its main tributaries. Phytologia Balcanica 12: 181–189.

    Google Scholar 

  • Prenda, J., M. Clavero, F. Blanco-Garrido & V. Hermoso, 2006. Threats to the conservation of biotic integrity in Iberian fluvial ecosystems. Limnetica 25: 377–388.

    Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Raven, P. J., N. T. H. Holmes, F. H. Dawson & D. Withrington, 2005. River Habitat Survey in Slovenia. Results from 2005. Environment Agency, Bristol: 28 pp.

  • Raven, P. J., N. T. H. Holmes & F. H. Dawson, 2007a. River Habitat Survey in the Ardèches and Cévennes areas of South-eastern France. Results from 2007. Environment Agency, Bristol: 25 pp.

  • Raven, P. J., N. T. H. Holmes, F. H. Dawson, W. Binder & H. Mühlmann, 2007b. River Habitat Survey in Southern Bavaria and the Tyrolean Alps. Results from 2006. Environment Agency, Bristol: 24 pp.

  • Raven, P. J., N. T. H. Holmes, P. Scarlett, M. Furse & J. B. Ortiz, 2009a. River Habitat Survey in the Picos de Europa, Northern Spain. Results from 2008. Environment Agency, Bristol: 33 pp.

  • Raven, P. J., N. T. H. Holmes, J. Pádua, J. Ferreira, S. Hughes, L. Baker, L. Taylor & K. Seager, 2009b. River Habitat Survey in Southern Portugal. Results from 2009. Environment Agency, Bristol: 30.

    Google Scholar 

  • Ros, R., V. Mazimpaka, U. Abou-Salama, M. Aleffi, T. Blockeel, M. Brugués, M. Cano, R. Cros, M. Dia & G. Dirkse, 2007. Hepatics and Anthocerotes of the Mediterranean, an annotated checklist. Cryptogamie Bryologie 28: 351.

    Google Scholar 

  • Ros, R. M., V. Mazimpaka, U. Abou-Salama, M. Aleffi, T. L. Blockeel, M. Brugués, R. M. Cros, M. G. Dia, G. M. Dirkse, I. Draper, W. El-Saadawi, A. Erdağ, A. Ganeva, R. Gabriel, J. M. González-Mancebo, C. Granger, I. Herrnstadt, V. Hugonnot, K. Khalil, H. Kürschner, A. Losada-Lima, L. Luís, S. Mifsud, M. Privitera, M. Puglisi, M. Sabovljević, C. Sérgio, H. M. Shabbara, M. Sim-Sim, A. Sotiaux, R. Tacchi, A. Vanderpoorten & O. Werner, 2013. Mosses of the Mediterranean, an annotated checklist. Cryptogamie Bryologie 34: 99–283.

    Article  Google Scholar 

  • Salminen, R., J. Plant & S. Reeder, 2005. Geochemical atlas of Europe. Part 1, Background information, methodology and maps. Geological Survey of Finland Espoo.

  • Sánchez-Montoya, M. D. M., T. PuntÍ, M. L. Suárez, M. D. R. Vidal-Abarca, M. Rieradevall, J. M. Poquet, C. Zamora-Muñoz, S. Robles, M. Álvarez, J. Alba-Tercedor, M. Toro, A. M. Pujante, A. Munné & N. Prat, 2007. Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshwater Biology 52: 2240–2255.

    Article  Google Scholar 

  • Scarlett, P. & M. O’Hare, 2006. Community structure of in-stream bryophytes in English and Welsh rivers. Hydrobiologia 553: 143–152.

    Article  Google Scholar 

  • Sérgio, C. & D. Draper, 2001. Bryophyte survey as a basis for the validity of the Mediterranean isoclimatic areas in Portugal. Bocconea 13: 89–99.

    Google Scholar 

  • Sérgio, C., R. Figueira & A. M. V. Crespo, 2000. Observations of heavy metal accumulation in the cell walls of Fontinalis antipyretica, in a Portuguese stream affected by mine effluent. Journal of Bryology 22: 251–255.

    Article  Google Scholar 

  • Staniszewski, R., K. Szoszkiewicz, J. Zbierska, J. Lesny, S. Jusik & R. T. Clarke, 2006. Assessment of sources of uncertainty in macrophyte surveys and the consequences for river classification. Hydrobiologia 566: 235–246.

    Article  Google Scholar 

  • Stella, J. C., P. M. Rodríguez-González, S. Dufour & J. Bendix, 2013. Riparian vegetation research in Mediterranean-climate regions: common patterns, ecological processes, and considerations for management. Hydrobiologia 719: 291–315.

    Article  Google Scholar 

  • Suren, A. M., 1996. Bryophyte distribution patterns in relation to macro-, meso-, and micro-scale variables in South Island, New Zealand streams. New Zealand Journal of Marine and Freshwater Research 30: 501–523.

    Article  Google Scholar 

  • Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.

    Article  CAS  PubMed  Google Scholar 

  • Szoszkiewicz, K., T. Ferreira, T. Korte, A. Baattrup-Pedersen, J. Davy-Bowker & M. O’Hare, 2006. European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566: 211–234.

    Article  CAS  Google Scholar 

  • ter Braak, C. J., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. F. & P. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.

    Article  Google Scholar 

  • ter Braak, C. & P. Smilauer, 2012. Canoco Reference Manual and User’s Guide: Software for Ordination. Microcomputer Power, Ithaca.

    Google Scholar 

  • Thuiller, W., D. Georges & R. Engler, 2013. Biomod2: ensemble platform for species distribution modeling. R package version 3:1–25.

  • Tierno de Figueroa, J. M., M. López-Rodríguez, S. Fenoglio, P. Sánchez-Castillo & R. Fochetti, 2013. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719: 137–186.

    Article  Google Scholar 

  • Urbanič, G., 2009. Inland aquatic bioregions of Mediterranean climate region of Slovenia; biodiversity and possible climate change impacts. Review of Hydrobiology 2: 107–116.

    Google Scholar 

  • Vanderpoorten, A. & J. P. Klein, 1999. Variations of the aquatic bryophyte assemblages in the Rhine Rift related to water quality. 1. The waterfalls of the Vosges and the Black Forest. Journal of Bryology 21: 109–115.

    Article  Google Scholar 

  • Vieira, C., A. Séneca, M. T. Ferreira & C. Sérgio, 2012a. The use of bryophytes for fluvial assessment of mountain streams in Portugal. In Boon, P. J. & P. J. Raven (eds), River Conservation and Management. Wiley, Chichester: 143–157.

    Chapter  Google Scholar 

  • Vieira, C., A. Séneca, C. Sérgio & M. T. Ferreira, 2012b. Bryophyte taxonomic and functional groups as indicators of fine scale ecological gradients in mountain streams. Ecological Indicators 18: 98–107.

    Article  Google Scholar 

  • Vieira, C., F. C. Aguiar & M. Ferreira, 2014. The relevance of bryophytes in the macrophyte-based reference conditions in Portuguese rivers. Hydrobiologia 737: 245–264.

    Article  CAS  Google Scholar 

  • Vitt, D. H. & J. M. Glime, 1984. The structural adaptations of aquatic Musci. Lindbergia 10: 95–110.

    Google Scholar 

  • Zechmeister, H. G. & L. Mucina, 1994. Vegetation of European springs: high-rank syntaxa of the Montio-Cardaminetea. Journal of Vegetation Science 5: 385–402.

    Article  Google Scholar 

  • Zechmeister, H. G., K. Grodzinska & S. Szarek-Lukazewska, 2012. Bioindicators in use: Bryophytes. In Markert, B. A., A. M. Breure & H. G. Zechmeister (eds), Bioindicators and Biomonitors: Principles, Concepts and Applications. Elsevier, Amsterdam: 329–375.

    Google Scholar 

Download references

Acknowledgments

We dedicate this article to Nigel Holmes, author and colleague and an authority on river plants and the biggest influence on river conservation and restoration in the UK. By demonstrating the importance of macrophytes as ecological indicators, he transformed the way rivers were assessed both in Britain and across other parts of Europe. He will be sorely missed and fondly remembered by his many colleagues and friends for his inspiration, boundless energy, compassion, kindness, humour and youthful enthusiasm. He was in every sense a colossus who shaped modern-day river management. We thank Dr. Luoma Samrit from the Geological survey of Finland who kindly provided us geochemical data from the Geochemical Atlas of Europe. CV is funded by the Fundação para a Ciência e Tecnologia (FCT) under a Postdoctoral fellowship (SFRH/BPD/63741/2009) co-funded by the Programa Operacional Ciência e Inovação—2010 and Fundo Social Europeu. We are also in debt to the institutions providing financial support, monitoring and environmental data, namely the INAG IP/Agência Portuguesa do Ambiente IP (Portugal), IRSTEA (France), ENEA Saluggia Research Center (Italy), Water Development Department (Cyprus), University of Ljubljana and Ministry of the Environment and Spatial Planning of the Republic of Slovenia (Slovenia), University of Patras and “Karatheodoris” research project (Greece), Catalan Water Agency, Spanish Ministry of Environment and Conferederación Hidrográfica del Ebro (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vieira.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, C., Aguiar, F.C., Portela, A. et al. Bryophyte communities of Mediterranean Europe: a first approach to model their potential distribution in highly seasonal rivers. Hydrobiologia 812, 27–43 (2018). https://doi.org/10.1007/s10750-016-2743-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2743-5

Keywords

Navigation