Skip to main content

Advertisement

Log in

Water velocity limits the temporal extent of herbivore effects on aquatic plants in a lowland river

  • PLANTS IN AQUATIC SYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albayrak, I., V. Nikora, O. Miler & M. T. O’Hare, 2014. Flow-plant interactions at leaf, stem and shoot scales: drag, turbulence, and biomechanics. Aquatic Sciences 76: 269–294.

    Article  Google Scholar 

  • Arnell, N. W., 2003. Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: future streamflows in Britain. Journal of Hydrology 270: 195–213.

    Article  Google Scholar 

  • Bacon, P. J. & A. E. Coleman, 1986. An analysis of weight changes in the mute swan Cygnus olor. Bird Study 33: 145–158.

    Article  Google Scholar 

  • Bakker, E. S., J. F. Pagès, R. Arthur & T. Alcoverro, 2016. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39: 162–179.

    Article  Google Scholar 

  • Barrat-Segretain, M. H. & D. G. Lemoine, 2007. Can snail herbivory influence the outcome of competition between Elodea species? Aquatic Botany 86: 157–162.

    Article  Google Scholar 

  • Berrie, A. D., 1992. The chalk-stream environment. Hydrobiologia 248: 3–9.

    Article  CAS  Google Scholar 

  • Birkhead, M. & C. M. Perrins, 1986. The Mute Swan. Croom Helm, London.

    Google Scholar 

  • Bovee, K. D. & R. Milhouse, 1978. Hydraulic simulation in instream flow studies: theory and techniques. US Fish and Wildlife Service, Office of Biological Services, Fort Collins, Colorado.

    Google Scholar 

  • Bowes, M. J., J. T. Smith & C. Neal, 2009. The value of high-resolution nutrient monitoring: a case study of the River Frome, Dorset, UK. Journal of Hydrology 378: 82–96.

    Article  CAS  Google Scholar 

  • Chaichana, R., R. Leah & B. Moss, 2011. Seasonal impact of waterfowl on communities of macrophytes in a shallow lake. Aquatic Botany 95: 39–44.

    Article  Google Scholar 

  • Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1: 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Clausen, P., 2000. Modeling water level influence on habitat choice and food availability for Zostera feeding brent geese Branta bernicla in non-tidal areas. Wildlife Biology 6: 75–87.

    Google Scholar 

  • Cyr, H. & M. L. Pace, 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361: 148–150.

    Article  Google Scholar 

  • Dawson, F. H., 1976. The annual production of the aquatic macrophyte Ranunculus penicillatus var. calcareus (RW Butcher) CDK Cook. Aquatic Botany 2: 51–73.

    Article  Google Scholar 

  • Dawson, F. H. & W. N. Robinson, 1984. Submerged macrophytes and the hydraulic roughness of a lowland chalk stream. Verhandlungen International Vereinigung Theoretische Angewandte Limnologie 22: 1944–1948.

    Google Scholar 

  • Delany, S., 2005. Mute swan Cygnus olor. In Kear, J. (ed.), Ducks, Geese and Swans. Oxford University Press, Oxford: 231–234.

    Google Scholar 

  • Environment Agency, 2004. The State of England’s Chalk Rivers. A report by the UK Biodiversity Action Plan Steering Group for Chalk Rivers, Environment Agency, Bristol, UK.

  • Franklin, P., M. Dunbar & P. Whitehead, 2008. Flow controls on lowland river macrophytes: a review. Science of the Total Environment 400: 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Garner, G., D. M. Hannah, J. P. Sadler & H. G. Orr, 2014. River temperature regimes of England and Wales: spatial patterns, inter-annual variability and climatic sensitivity. Hydrological Processes 28: 5583–5598.

    Article  Google Scholar 

  • Gayet, G., M. Guillemain, H. Fritz, F. Mesleard, C. Begnis, A. Costiou, G. Body, L. Curtet & J. Broyer, 2011a. Do mute swan (Cygnus olor) grazing, swan residence and fishpond nutrient availability interactively control macrophyte communities? Aquatic Botany 95: 110–116.

    Article  Google Scholar 

  • Gayet, G., C. Eraud, M. Benmergui, J. Broyer, F. Mesleard, H. Fritz & M. Guillemain, 2011b. Breeding mute swan habitat selection when accounting for detectability: a plastic behaviour consistent with rapidly expanding populations. European Journal of Wildlife Research 57: 1051–1056.

    Article  Google Scholar 

  • Gordon, N. D., 1992. Stream Hydrology: An Introduction for Ecologists. Wiley, Chichester.

    Google Scholar 

  • Gurnell, A. M., M. P. Van Oosterhout, B. De Vlieger & J. M. Goodson, 2006. Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Research and Applications 22: 667–680.

    Article  Google Scholar 

  • Gurnell, A. M., J. M. O’Hare, M. T. O’Hare, M. J. Dunbar & P. M. Scarlett, 2010. An exploration of associations between assemblages of aquatic plant morphotypes and channel geomorphological properties within British rivers. Geomorphology 116: 135–144.

    Article  Google Scholar 

  • Hannaford, J. & G. Buys, 2012. Trends in seasonal river flow regimes in the UK. Journal of Hydrology 475: 158–174.

    Article  Google Scholar 

  • Harrison, M. D. K., 1985. Report on the assessment of damage to agriculture by mute swans in the Wylye Valley 1984/85. Agricultural Development Advisory Service, Bristol, UK.

  • Haury, J. & L. G. Aïdara, 1999. Macrophyte cover and standing crop in the River Scorff and its tributaries (Brittany, northwestern France): scale, patterns and process. Hydrobiologia 415: 109–115.

    Article  Google Scholar 

  • Heck, K. L. & J. F. Valentine, 2006. Plant–herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology 330: 420–436.

    Article  Google Scholar 

  • Hilton, J., M. O’Hare, M. J. Bowes & J. I. Jones, 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365: 66–83.

    Article  CAS  PubMed  Google Scholar 

  • Jermy, T., 1984. Evolution of insect/host plant relationships. American Naturalist 124: 609–630.

    Article  Google Scholar 

  • Klaassen, M. & B. A. Nolet, 2007. The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan – Fennel Pondweed system. Hydrobiologia 584: 205–213.

    Article  Google Scholar 

  • Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.

    Article  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Milchunas, D. G. & W. K. Lauenroth, 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs 63: 327–366.

    Article  Google Scholar 

  • Miler, O., I. Albayrak, V. I. Nikora & M. O’Hare, 2012. Biomechanical properties of aquatic plants and their effects on plant–flow interactions in streams and rivers. Aquatic Sciences 74: 31–44.

    Article  Google Scholar 

  • Miler, O., I. Albayrak, V. I. Nikora & M. O’Hare, 2014. Biomechanical properties and morphological characteristics of lake and river plants: implications for adaptations to flow conditions. Aquatic Sciences 76: 465–481.

    Article  Google Scholar 

  • Miller, S. A. & T. A. Crowl, 2006. Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshwater Biology 51: 85–94.

    Article  Google Scholar 

  • Mitchell, S. F. & R. T. Wass, 1996. Quantifying herbivory: grazing consumption and interaction strength. Oikos 76: 573–576.

    Article  Google Scholar 

  • Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.

    Article  Google Scholar 

  • Nolet, B. A., V. A. Andreev, P. Clausen, M. J. Poot & E. G. Wessel, 2001. Significance of the White Sea as a stopover for Bewick’s swans Cygnus columbianus bewickii in spring. Ibis 143: 63–71.

    Article  Google Scholar 

  • O’Hare, M. T., R. A. Stillman, J. McDonnell & L. R. Wood, 2007a. Effects of mute swan grazing on a keystone macrophyte. Freshwater Biology 52: 2463–2475.

    Article  Google Scholar 

  • O’Hare, M. T., K. Hutchinson & R. T. Clarke, 2007b. The drag and reconfiguration experienced by five macrophytes from a lowland river. Aquatic Botany 86: 253–259.

    Article  Google Scholar 

  • O’Hare M. T., P. Scarlett, P. Henville, T. Ryaba, C. Cailes & J. Newman, 2008. Variability in Manning’s n estimates for vegetated rivers. Core Site Study. Intra- and Inter- Annual Variability. An Aquatic Plant Management Group Report. Centre for Ecology & Hydrology, UK.

  • Porteus, T. A., M. J. Short, J. C. Reynolds, D. N. Stubbing, S. M. Richardson & N. J. Aebischer, 2008. The impact of grazing by mute swans (Cygnus olor) on the biomass of chalk stream macrophytes. Unpublished report to the Environment Agency. Game and Wildlife Conservation Trust, Hampshire, UK

  • R Development Core Team, 2015. R: a language and environment for statistical computing. [3.1.2]. R Foundation for Statistical Computing, Vienna, Austria.

  • Riis, T. & B. J. Biggs, 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology & Oceanography 48: 1488–1497.

    Article  Google Scholar 

  • Royan, A., D. M. Hannah, S. J. Reynolds, D. G. Noble & J. P. Sadler, 2013. Avian community responses to variability in river hydrology. PLoS One 8: e83221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Royan, A., C. Prudhomme, D. M. Hannah, S. J. Reynolds, D. G. Noble & J. P. Sadler, 2015. Climate-induced changes in river flow regimes will alter future bird distributions. Ecosphere 6: 50.

    Article  Google Scholar 

  • Søndergaard, M., L. Bruun, T. Lauridsen, E. Jeppesen & T. V. Madsen, 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73–84.

    Article  Google Scholar 

  • Stillman, R. A., K. A. Wood, W. Gilkerson, E. Elkinton, J. M. Black, D. H. Ward & M. Petrie, 2015. Predicting effects of environmental change on a migratory herbivore. Ecosphere 6: 114.

    Article  Google Scholar 

  • Trump, D. P., D. A. Stone, C. F. Coombs & C. J. Feare, 1994. Mute swans in the Wylye Valley: population dynamics and habitat use. International Journal of Pest Management 40: 88–93.

    Article  Google Scholar 

  • Usherwood, J. R., A. R. Ennos & D. J. Ball, 1997. Mechanical and anatomical adaptations in terrestrial and aquatic buttercups to their respective environments. Journal of Experimental Botany 48: 1469–1475.

    Article  CAS  Google Scholar 

  • van der Wal, J. E., M. Dorenbosch, A. K. Immers, C. Vidal Forteza, J. J. Geurts, E. T. H. M. Peeters, B. Koese & E. S. Bakker, 2013. Invasive crayfish threaten the development of submerged macrophytes in lake restoration. PLoS One 8: e78579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan, I. P., D. G. Noble & S. J. Ormerod, 2007. Combining surveys of river habitats and river birds to appraise riverine hydromorphology. Freshwater Biology 52: 2270–2284.

    Article  Google Scholar 

  • Wass, R. & S. F. Mitchell, 1998. What do herbivore exclusion experiments tell us? An investigation using black swans (Cygnus atratus Latham) and filamentous algae in a shallow lake. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 282–289.

    Chapter  Google Scholar 

  • Watola, G. V., D. A. Stone, G. C. Smith, G. J. Forrester, A. E. Coleman, J. T. Coleman, M. J. Goulding, K. A. Robinson & T. P. Milsom, 2003. Analyses of two mute swan populations and the effects of clutch reduction: implications for population management. Journal of Applied Ecology 40: 565–579.

    Article  Google Scholar 

  • Webb, B. W., P. D. Clack & D. E. Walling, 2003. Water–air temperature relationships in a Devon river system and the role of flow. Hydrological Processes 17: 3069–3084.

    Article  Google Scholar 

  • Whittaker, J. B., 1982. The effect of grazing by a chrysomelid beetle, Gastrophysa viridula, on growth and survival of Rumex crispus on a shingle bank. Journal of Ecology 70: 291–296.

    Article  Google Scholar 

  • Wilby, R. L., 2006. When and where might climate change be detectable in UK river flows? Geophysical Research Letters 33: L19407.

    Article  Google Scholar 

  • Wood, K. A., R. A. Stillman, R. T. Clarke, F. Daunt & M. T. O’Hare, 2012a. The impact of waterfowl herbivory on plant standing crop: a meta-analysis. Hydrobiologia 686: 157–167.

    Article  Google Scholar 

  • Wood, K. A., R. A. Stillman, R. T. Clarke, F. Daunt & M. T. O’Hare, 2012b. Understanding plant community responses to combinations of biotic and abiotic factors in different phases of the plant growth cycle. PLoS One 7: e49824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, K. A., R. A. Stillman, F. Daunt & M. T. O’Hare, 2012c. An individual-based model of swan-macrophyte conflicts on a chalk river. In Boon, P. J. & P. J. Raven (eds), River Conservation and Management. Wiley-Blackwell, Chichester: 339–343.

    Chapter  Google Scholar 

  • Wood, K. A., R. A. Stillman, R. T. Clarke, F. Daunt & M. T. O’Hare, 2012d. Measuring submerged macrophyte standing crop in shallow rivers: a test of methodology. Aquatic Botany 102: 28–33.

    Article  Google Scholar 

  • Wood, K. A., R. A. Stillman, D. Wheeler, S. Groves, C. Hambly, J. R. Speakman, F. Daunt & M. T. O’Hare, 2013a. Go with the flow: water velocity regulates herbivore foraging decisions in river catchments. Oikos 122: 1720–1729.

    Article  Google Scholar 

  • Wood, K. A., R. A. Stillman, T. Coombs, C. McDonald, F. Daunt & M. T. O’Hare, 2013b. The role of season and social grouping on habitat use by mute swans (Cygnus olor) in a lowland river catchment. Bird Study 60: 229–237.

    Article  Google Scholar 

  • Wood, K. A., R. A. Stillman, F. Daunt & M. T. O’Hare, 2015. The swan grazing conflict in chalk rivers. In Redpath, S. M., R. J. Gutierrez, K. A. Wood & J. C. Young (eds), Conflicts in Conservation: Navigating Towards Solutions. Cambridge University Press, Cambridge: 134–136.

    Google Scholar 

  • Wood, K. A., M. T. O’Hare, C. McDonald, K. R. Searle, F. Daunt & R. A. Stillman, 2016. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews. doi:10.1111/brv.12272

  • Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Freshwater Biological Association and the other riparian landowners for allowing access to the study river reaches and for logistical support. The Environment Agency provided daily water discharge data. Pete Scarlett and Lucy Mulholland kindly assisted with macrophyte species identification and data collection, respectively. Two anonymous reviewers provided valuable feedback on an earlier version of this manuscript. This study was funded by the Natural Environment Research Council (NERC) through a Centre for Ecology & Hydrology Algorithm studentship awarded to KAW (NEC3579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Wood.

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, K.A., Stillman, R.A., Clarke, R.T. et al. Water velocity limits the temporal extent of herbivore effects on aquatic plants in a lowland river. Hydrobiologia 812, 45–55 (2018). https://doi.org/10.1007/s10750-016-2744-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2744-4

Keywords

Navigation