Skip to main content
Log in

Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The assessment of ecological integrity of river systems is multidisciplinary and necessary for effective river management. The objectives of this study were (i) to characterize the spatial and temporal distribution of macroinvertebrate and algae community assemblages; (ii) to determine the environmental variables that affect assemblage distributions; and (iii) to determine the suitability of the selected bioindicators in relation to environmental conditions. Two agriculturally influenced coastal rivers, in the southern Cape Province, South Africa, provided case studies. Wet and dry season’s results indicated that minimally impacted sites were associated with pollution-sensitive macroinvertebrate and algal taxa with increased habitat scores. These sites were dominated by diatoms and macroinvertebrates indicative of low electrical conductivity (12–16 mS m−1), pH (4–5), and alkalinity (0.5–2.1 mg l−1). A positive correlation between nitrogen and phosphorus and river flow regime occurred at agriculturally impacted sites and algal taxa changes were driven by nutrient enrichment. Macroinvertebrates were indicative of habitat integrity and river condition while diatoms were indicative of pH and electrical conductivity. The benthic filamentous algae were indicative of increased nutrients and alkalinity. Results suggest that the full consortium of algae and macroinvertebrates be used as bioindicators for ecological integrity assessments in short, coastal rivers, which have application to rivers generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods, Plymouth, UK, PRIMER-E.

  • APHA, 2006. Standard Methods for Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Biggs, B. J. F., 2000. Eutrophication of streams and rivers: dissolved nutrients—chlorophyll relationships for benthic algae. Journal of North American Benthological Society 19: 17–31.

    Article  Google Scholar 

  • Biggs, B. J. F. & G. M. Price, 1987. A survey of filamentous algal proliferations in New Zealand rivers. New Zealand Journal of Marine and Freshwater Research 21: 175–191.

    Article  Google Scholar 

  • Biggs, B. J. F. & R. A. Smith, 2002. Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnology and Oceanography 47: 1175–1186.

    Article  CAS  Google Scholar 

  • Blettler, M. C. M., M. L. Amsler, E. G. Eberle, R. Szupiany, F. G. Latosinski, E. Abrial, P. J. Oberholster, L. A. Espinola, A. Paira, A. Poza & R. A. Capitulo, 2016. Linking hydro-morphology with invertebrate ecology in diverse morphological units of a large river-floodplain system. Water Resources Research 52: 9495–9510.

    Article  Google Scholar 

  • Buffington, J. M. & D. R. Montgomery, 2013. 9.36 Geomorphic classification of rivers. In Shroder, J. F. (ed.), Treatise on Geomorphology. Academic Press, San Diego: 730–767.

    Chapter  Google Scholar 

  • Chessman, B., I. Growns, J. Currey & N. Plunkett-Cole, 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshwater Biology 41: 317–331.

    Article  Google Scholar 

  • Chételat, J., F. R. Pick, A. Morin & P. B. Hamilton, 1999. Periphyton biomass and community composition in rivers of different nutrient status. Canadian Journal of Fisheries and Aquatic Sciences 56: 560–569.

    Article  Google Scholar 

  • Chon, T. S., X. Qu, W. S. Cho, H. J. Hwang, H. Tang, Y. Liu, J. H. Choi, M. Jung, B. S. Chung, H. Y. Lee & Y. R. Chung, 2013. Evaluation of stream ecosystem health and species association based on multi-taxa (benthic macroinvertebrates, algae, and microorganisms) patterning with different levels of pollution. Ecological Informatics 17: 58–72.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. Primer V6: User Manual/Tutorial, Plymouth, UK.

  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Ltd., Plymouth.

    Google Scholar 

  • Dela-Cruz, J., T. I. M. Pritchard, G. Gordon & P. Ajani, 2006. The use of periphytic diatoms as a means of assessing impacts of point source inorganic nutrient pollution in south-eastern Australia. Freshwater Biology 51: 951–972.

    Article  CAS  Google Scholar 

  • Descy, J. P. & M. Coste, 1991. A test of methods for assessing water quality based on diatoms. Verhandlungen des Internationalen Verein Limnologie 24: 2112–2116.

    Google Scholar 

  • Dewson, Z. S., A. B. James & R. G. Death, 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.

    Article  Google Scholar 

  • Dickens, C. W. S. & P. M. Graham, 2002. The South African Scoring System (SASS) version 5 rapid bioassessment method for rivers. African Journal of Aquatic Science 27: 1–10.

    Article  Google Scholar 

  • Dodds, W. K., V. H. Smith & K. Lohman, 2002. Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 865–874.

    Article  Google Scholar 

  • Douterelo, I., E. Perona & P. Mateo, 2004. Use of cyanobacteria to assess water quality in running waters. Environmental Pollution 127: 377–384.

    Article  CAS  PubMed  Google Scholar 

  • DWAF, 1996a. South African Water Quality Guidelines. Volume 1. Domestic Water Use, Vol. 1, 2nd ed. Department of Water Affairs and Forestry, Pretoria.

    Google Scholar 

  • DWAF, 1996b. South African Water Quality Guidelines (2nd Edition). Volume 7: Aquatic Ecosystems. DWAF, Pretoria.

    Google Scholar 

  • Eady, B. R., T. R. Hill & N. A. Rivers-Moore, 2014. Shifts in aquatic macroinvertebrate community structure in response to perenniality, southern Cape, South Africa. Journal of Freshwater Ecology 29: 475–490.

    Article  CAS  Google Scholar 

  • Elosegi, A., J. Díez & M. Mutz, 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657: 199–215.

    Article  Google Scholar 

  • Ewart-Smith, J. & J. King, 2012. The Relationship Between Periphyton, Flow and Nutrient Status in South-Western Cape Foothill Rivers and the Implications for Management, Water Research Commission Report No. 1676/1/12, Pretoria, South Africa.

  • Ewart-Smith, J. L., 2012. The Relationship Between Periphyton, Flow and Nutrients in Foothill Rivers of the South-Western Cape. Department of Zoology, University of Cape Town, Cape Town: 1–285.

    Google Scholar 

  • Feminella, J. W. & C. P. Hawkins, 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of North American Benthological Society 14: 465–509.

    Article  Google Scholar 

  • Figueroa-Nieves, D., T. V. Royer & M. B. David, 2006. Controls on chlorophyll-a in nutrient-rich agricultural streams in Illinois, USA. Hydrobiologia 568: 287–298.

    Article  CAS  Google Scholar 

  • Gökçe, D., 2016. Algae as an indicator of water quality. In Dhanasekaran, D. (ed.), Algae – Organisms for Imminent Biotechnology. InTech, Rijeka: 1–18.

    Google Scholar 

  • Harding, W. R., C. G. M. Archibald & J. C. Taylor, 2005. The relevance of diatoms for water quality assessment in South Africa: a position paper. Water SA 31: 41–46.

    Article  CAS  Google Scholar 

  • Hawkins, C. P., J. N. Hogue, L. M. Decker & J. W. Feminella, 1997. Channel morphology, water temperature, and assemblage structure of stream insects. Journal of North American Benthological Society 16: 728–749.

    Article  Google Scholar 

  • Holt, E. A. & S. W. Miller, 2011. Bioindicators: using organisms to measure environmental impacts. Nature Education Knowledge 3: 8.

    Google Scholar 

  • Jacobson, R. B., 2013. 12.2 riverine habitat dynamics. In Shroder, J. F. (ed.), Treatise on Geomorphology. Academic Press, San Diego: 6–19.

    Chapter  Google Scholar 

  • King, J. M. & D. M. Schael, 2001. Assessing the Ecological Relevance of a Spatially-Nested Geomorphological Hierarchy for River Management, Water Research Commission Report No. 754/1/01, Pretoria, South Africa.

  • Komarek, J. & K. Anagnostidis, 1999. Cyanoprokaryota: Chroococcales. In Ettl, H., H. H. Gartner & D. Mollenhauer (eds), Susswasserflora von Mitteleuropa 19/1. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Komarek, J. & K. Anagnostidis, 2005. Cyanoprokaryota: Oscillatoriales. In Budel, B., G. Gartner, L. Krienitz & M. Schager (eds), Susswasserflora von Mitteleuropa 19/2. Elsevier, Munchen.

    Google Scholar 

  • Kutka, F. J. & C. Richards, 1996. Relating diatom assemblage structure to stream habitat quality. Journal of the North American Benthological Society 15: 469–480.

    Article  Google Scholar 

  • Li, L., B. Zheng & L. Liu, 2010. Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environmental Sciences 2: 1510–1524.

    Article  Google Scholar 

  • Lubke, R. & I. de Moor, 1998. Field Guide to the Eastern and Southern Cape Coasts. University of Cape Town Press, Cape Town.

    Google Scholar 

  • Marks, J. C. & R. L. Lowe, 1989. The independent and interactive effects of snail grazing and nutrient enrichment on structuring periphyton communities. Hydrobiologia 185: 9–17.

    Article  Google Scholar 

  • Márquez, J. A., L. Cibils, R. E. Principe & R. J. Albariño, 2015. Stream macroinvertebrate communities change with grassland afforestation in central Argentina. Limnologica - Ecology and Management of Inland Waters 53: 17–25.

    Article  Google Scholar 

  • McMillan, P. H., 1998. An Integrated Habitat Assessment System (IHAS v2), for the Rapid Biological Assessment of Rivers and Streams. CSIR, Pretoria.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendal/Hunt, Dubuque.

    Google Scholar 

  • Munn, M. D., L. L. Osborne & M. J. Wiley, 1989. Factors influencing periphyton growth in agricultural streams of central Illinois. Hydrobiologia 174: 89–97.

    Article  CAS  Google Scholar 

  • Oberholster, P. J., 2011. Using epilithic filamentous green algae communities as indicators of water quality in the headwaters of three South African river systems during high and medium flow periods. In Kattel, G. (ed.), Zooplankton and Phytoplankton. Nova Science Publishers Inc, New York: 1–16.

    Google Scholar 

  • Oberholster, P. J. & A. R. de Klerk, 2014. Aquatic ecosystems in the coal mining landscape of the Upper Olifants River, and the way forward. 21st Century challenges to the southern African coal Sector, The Southern African Institute of Mining and Metallurgy, Johannesburg: 237–251.

  • Oberholster, P. J., V. S. Somerset, J. C. Truter & A.-M. Botha, 2016. The interplay between environmental conditions and filamentous algae mat formation in two agricultural influenced South African rivers. River Research and Applications 33: 388–402.

    Article  Google Scholar 

  • Oberholster, P. J., A. M. Botha, L. Hill & W. F. Strydom, 2017. River catchment responses to anthropogenic acidification in relationship with sewage effluent: an ecotoxicology screening application. Chemosphere 189: 407–417.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, C. R., N. Z. Jovanovic, D. C. Le Maitre & M. C. Grenfell, 2017. Effects of land use change on streamflow and stream water quality of a coastal catchment. Water SA 43: 551–564.

    Google Scholar 

  • Porra, R. J., W. A. Thompson & P. E. Kriedemann, 1989. Determination of accurate extinction coefficient and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochimica et Biophysica Acta 975: 384–394.

    Article  CAS  Google Scholar 

  • Porter, S. D., D. K. Mueller, N. E. Spahr, M. D. Munn & N. M. Dubrovsky, 2008. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters. Freshwater Biology 53: 1036–1054.

    Article  Google Scholar 

  • Qu, X., H. Zhang, M. Zhang, M. Liu, Y. Yu, Y. Xie & W. Peng, 2016. Application of multiple biological indices for river health assessment in northeastern China. Annales de Limnologie-International Journal of Limnology 52: 75–89.

    Article  Google Scholar 

  • Resh, V. H., 2008. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environmental Monitoring and Assessment 138: 131–138.

    Article  PubMed  Google Scholar 

  • Rowntree, K. M., R. A. Wadeson & J. O’Keefe, 2000. The development of a Geomorphological classification system for the longitudinal zonation of South African rivers. South African Geographical Journal 82: 163–172.

    Article  Google Scholar 

  • Russell, I. A., 2013. Spatio-temporal variability of surface water quality parameters in a South African estuarine lake system. African Journal of Aquatic Science 38: 53–66.

    Article  CAS  Google Scholar 

  • Santoul, F., J. Cayrou, S. Mastrorillo & R. Céréghino, 2005. Spatial patterns of the biological traits of freshwater fish communities in south-west France. Journal of Fish Biology 66: 301–314.

    Article  Google Scholar 

  • Schael, D. M., 2005. Distributions of physical habitats and benthic macroinvertebrates in Western Cape headwater streams at multiple spatial and temporal scales. University of Cape Town, Cape Town: 1–239.

    Google Scholar 

  • Schneider, S. C. & E.-A. LindstrØm, 2011. The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 665: 143–155.

    Article  CAS  Google Scholar 

  • Smith, J., M. J. Samways & S. Taylor, 2007. Assessing riparian quality using two complementary sets of bioindicators. Biodiversity and Conservation 16: 2695–2713.

    Article  Google Scholar 

  • Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritren, B. D. Snyder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish 2ndEPA 841-B-99-002 edn. United States Environmental Protection Agency, Washington, DC: 6–22.

    Google Scholar 

  • Summers, J. S., 2008. Assessment of filamentous algae in the Greenbrier River and other West Virginia streams. West Virginia Department of Environmental Protection, West Virginia.

    Google Scholar 

  • Taylor, J. C., W. R. Harding & C. G. M. Archibald, 2007a. An Illustrated Guide to Some Comman Diatom Species from South Africa, Water Research Commission Report No. TT 282/07, Pretoria, South Africa.

  • Taylor, J. C., J. Prygiel, A. Vosloo, P. A. de la Rey & L. van Rensburg, 2007b. Can diatom-based pollution indices be used for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area. Hydrobiologia 592: 455–464.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Article  Google Scholar 

  • Van Vuuren, S., J. C. Taylor, A. Gerber & C. Van Ginkel, 2006. Easy Identification of the Most Common Freshwater Algae. Department of Water Affairs and Forestry, Pretoria.

    Google Scholar 

  • Wehr, J. D. & R. G. Sheath, 2003. Freshwater habitats of algae. In Wehr, J. D., R. G. Sheath & P. Kociolek (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA: 11–57.

    Chapter  Google Scholar 

  • Wolman, M. G., 1954. A method of sampling coarse river-bed material EOS. Transactions of the American Geophysical Union 35: 951–956.

    Article  Google Scholar 

  • Wurts, W. & R. Durborow, 1992. Interaction of carbon dioxide, pH, alkalinity and hardness in fish ponds, United States Department of Agriculture, Southern Regional Aquaculture Centre (SRAC), Publication No. 464.

Download references

Acknowledgments

The authors acknowledge financial support from the CSIR’s Parliamentary Grant funding (Project Number ECRS002), National Research Foundation (Grant Number: 84209), the Department of Science and Technology (DST) (Project Number ECRS005), and the Water Research Commission (WRC) (2013–2016). Thanks to colleagues at the CSIR for assisting with fieldwork and for valuable comments on earlier drafts. We also want to thank the landowners in the Wilderness area for their support. The authors want to thank the anonymous referees for critically reviewing the manuscript and suggesting changes. Data may be obtained from the CSIR Research Space data repository (https://researchspace.csir.co.za/dspace/handle/10204/8989). Any additional data may be obtained from the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Petersen.

Additional information

Handling editor: David Philip Hamilton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, C.R., Jovanovic, N.Z., Grenfell, M.C. et al. Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems. Hydrobiologia 813, 157–175 (2018). https://doi.org/10.1007/s10750-018-3518-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3518-y

Keywords

Navigation