Skip to main content
Log in

Cumulative ecological effects of a Neotropical reservoir cascade across multiple assemblages

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dams have altered the physiography and ecology of large rivers, causing severe environmental changes at a global scale. Assuming that series of reservoirs induce physical, chemical, and biological longitudinal changes in rivers, we tested the hypotheses that (i) the structure of biological communities in reservoir cascades is not only affected by changes in water quality, but also by cumulative hydrological alteration and impacts on river connectivity; and (ii) fish are more affected by cumulative effects of reservoirs when compared to other aquatic assemblages. Samplings of three assemblages (phytoplankton, benthic macroinvertebrates, and fish) were conducted in the reservoir cascade of São Francisco River, Brazil. We estimated the relative role of environmental and spatial predictors through variation partitioning analyses. Environmental variables, cumulative reservoir volume, longitudinal position, and distances from nearest reservoirs were used as explanatory variables. Environmental variables were the most important for the phytoplankton community. No significant effects of the predictors used were found for benthic macroinvertebrates, whereas spatial variables and cumulative reservoir volume were the most important predictors for fish. Therefore, our results provide evidence of impacts along reservoir cascades, and suggest that their effects mainly influence fish assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agostinho, A. A. & H. F. Júlio Jr., 1999. Peixes da bacia do alto rio Paraná. In Lowe-Mcconnell, R. H. (ed), Estudos ecológicos de comunidades de peixes tropicais. Edusp, São Paulo: 374–400.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the Upper Paraná river: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.

    Article  Google Scholar 

  • Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem, Maringá.

    Google Scholar 

  • Anagnostidis, K. & J. Komarek, 1988. Modern approach to the classification system of Cyanophytes 3—Oscillatoriales. Algological Studies 50–53: 327–472.

    Google Scholar 

  • APHA, AWWA, WEF, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Barbosa, F. A. R., J. Padisák, E. L. G. Espindola, G. Borics & O. Rocha, 1999. The cascading Reservoir Continuum Concept (CRCC) and its application to the River Tietê basin, São Paulo State, Brazil. In Tundisi, J. G. & M. Straskaba (eds), Theoretical Reservoir Ecology and its Applications. Brazilian Academy of Sciences and Backhuys Publishers, São Carlos: 425–437.

    Google Scholar 

  • Behrend, R. D. L., A. M. Takeda, L. C. Gomes & S. E. P. Fernandes, 2012. Using oligochaeta assemblages as an indicator of environmental changes. Brazilian Journal Biology 72: 873–884.

    Article  CAS  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindstrom, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Bortolini, J. C., A. Pineda, L. C. Rodrigues, S. Jati & L. F. Machado-Velho, 2017. Environmental and spatial processes influencing phytoplankton biomass along a reservoirs-river-floodplain lakes gradient: a metacommunity approach. Freshwater Biology 62: 1756–1767.

    Article  CAS  Google Scholar 

  • Britski, H. A., Y. Sato & A. B. S. Rosa, 1984. Manual de identificação de peixes da região de Três Marias (com chaves de identificação para os peixes da bacia do São Francisco). Câmara dos deputados/CODEVASF, Brasília.

    Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and consequences of altered hydrological regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Callisto, M., M. Goulart, F. A. R. Barbosa & O. Rocha, 2005. Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (northeastern Brazil). Brazilian Journal Biology 65: 229–240.

    Article  CAS  Google Scholar 

  • Castello, L. & M. N. Macedo, 2015. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990–1007.

    Article  PubMed  Google Scholar 

  • Chick, J. H., M. A. Pegg & T. M. Koel, 2006. Spatial patterns of fish communities in the Upper Mississippi River system: assessing fragmentation by lowhead dams. River Research and Applications 22: 413–427.

    Article  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Dominguez, E. & H. R. Fernandez, 2001. Guia para la determinacion de los artropodos bentônicos sudamericanos. Universidad Nacional de Tucuman, Facultad de Ciencias Naturales e instituto, Tucuman.

    Google Scholar 

  • Dong, X. H., H. Bennion, S. C. Maberly, C. D. Sayer, G. L. Simpson & R. W. Battarbee, 2012. Nutrients exert a stronger control than climate on recent diatom communities in Esthwaite Water: evidence from monitoring and palaeolimnological records. Freshwater Biology 57: 2044–2056.

    Article  CAS  Google Scholar 

  • EMBRAPA, 1999. Manual de análises químicas de solos, plantas e fertilizantes. EMBRAPA, Rio de Janeiro.

    Google Scholar 

  • Fernandes, I. M., R. Henriques-Silva, J. Penha, J. Zuanon & P. R. Peres-Neto, 2013. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: The case of floodplain-fish communities. Ecography 37: 001–012.

    Google Scholar 

  • Ferrareze, M., L. Casatti & M. G. Nogueira, 2014. Spatial heterogeneity affecting fish fauna in cascade reservoirs of the Upper Paraná Basin, Brazil. Hydrobiologia 738: 97–109.

    Article  CAS  Google Scholar 

  • Franco, A. C. S., L. N. Santos, A. C. Petry & E. García-Berthou, 2018. Abundance of invasive peacock bass increases with water residence time of reservoirs in southeastern Brazil. Hydrobiologia. https://doi.org/10.1007/s10750-017-3467-x.

    Article  Google Scholar 

  • Gallardo, B., M. García, A. Cabezas, E. González, M. González, C. Ciancarelli & F. A. Comín, 2008. Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquatic Science 70: 248–258.

    Article  CAS  Google Scholar 

  • Godinho, H. P. & A. L. Godinho, 2003. Águas, peixes e pescadores do São Francisco das Minas Gerais. PUC Minas, Belo Horizonte.

    Google Scholar 

  • Golterman, H. L., R. S. Clyno & M. A. M. Ohnstad, 1978. Methods for physical and chemical analysis of freshwaters, 2nd ed. Blackwell, Oxford: 315.

    Google Scholar 

  • Grill, G., B. Lehner, A. E. Lumsdon, G. K. Macdonald, C. Zarfl & C. R. Liermann, 2015. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters 10: 015001.

    Article  Google Scholar 

  • Hasle, G. R., 1978. The inverted-microscope methods. In Sournia, A. (ed), Phytoplankton Manual. UNESCO, Paris: 88–96.

    Google Scholar 

  • Heino, J., 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418: 229–242.

    Article  Google Scholar 

  • Holt, C. R., D. Pfitzer, C. Scalley, B. A. Caldwell & D. P. Batzer, 2015. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Research and Application 31: 798–807.

    Article  Google Scholar 

  • Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. BioScience 64: 870–882.

    Article  Google Scholar 

  • IBGE—Instituto Brasileiro de Geografia e Estatística, 1999. Anuário estatístico do Brasil. IBGE p, Rio de Janeiro: 1119.

    Google Scholar 

  • John, D. M., B. A. Whitton & A. J. Brook, 2002. The freshwater algal flora of the British Isles. Cambridge University, United Kingdom.

    Google Scholar 

  • Junk, W. L., P. B. Baylay & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Kennedy, R. H., 1999. Reservoir design and operation: limnological implications and management opportunities. In Tundisi, J. G. & M. Straškraba (eds), Theoretical reservoir ecology and its applications. Brazilian Academy of Sciences & Backhuys Publishers, São Carlos: 1–28.

    Google Scholar 

  • Komárek, J. & B. Fott, 1983. Chlorophyceae (GrünAlgen) ordung: Chlorococcales. In Huber-Pestalozzi, G. (ed), Das phytoplankton des süsswassers. Die binnengewässer. Schweizerbart, Stuttgart: 1–1044.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1986. Modern approach to the classification system of Cyanophytes, 2—Chroococcales. Arch Hydrobiol Algological Studies 43: 157–226.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota—2. teil: Oscillatoriales. Elsevier GMBH, Heifelberg: 354–363.

    Google Scholar 

  • Koroleff, F., 1976. Determination of nutrients. In Grasshoff, K. (ed), Methods of seawater analysis. Verlag Chemie Weinheim, New York: 117–187.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae: Achnanthaceae Kritische Ergänzungen zu Navicula (Lineolatae) Und Gomphonema. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süβwasserflora Von mitteleuropa. Gustav Fischer Verlag, Stuttgart: 1–437.

    Google Scholar 

  • Legendre, P. & E. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Lv, H., J. Yang, L. Liu, X. Yu, Z. Yu & P. Chiang, 2014. Temperature and nutrients are significant drivers of seasonal shift in phytoplankton community from a drinking water reservoir, subtropical China. Environmental Science and Pollution Research 21: 5917–5928.

    Article  PubMed  CAS  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association, Cumbria.

    Google Scholar 

  • Magilligan, F. J. & K. H. Nislow, 2005. Changes in hydrologic regime by dams. Geomorphology 71: 61–78.

    Article  Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer research 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Mendonça, E. S. & E. S. Matos, 2005. Matéria orgânica do solo; métodos de análises. Universidade Federal de Viçosa, Viçosa: 107.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Miranda, L. E. & D. J. Dembkowski, 2016. Evidence for Serial Discontinuity in the fish community of a heavily impounded river. River Research and Applications 32: 1187–1195.

    Article  Google Scholar 

  • Miranda, L. E., M. D. Habrat & S. Miyazono, 2008. Longitudinal gradients along a reservoir cascade. Transactions of the American Fisheries Society 137: 1851–1865.

    Article  Google Scholar 

  • Møller, A. & M. D. Jennions, 2002. How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132(4): 492–500.

    Article  PubMed  Google Scholar 

  • Moreira Filho, H. & I. M. Valente-Moreira, 1981. Avaliação taxonômica e ecológica das diatomáceas (Bacillariophyceae) epífitas em algas pluricelulares obtidas nos litorais dos estados do Paraná, Santa Catarina e São Paulo. Boletim do Museu botânico municipal 47: 1–17.

    Google Scholar 

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world's large river systems. Science 308: 405–408.

    Article  PubMed  CAS  Google Scholar 

  • Nogueira, M. G., A. Jorcin, N. C. Vianna & Y. C. T. Britto, 2005. Reservatórios em cascata e os efeitos na limnologia e organização das comunidades bióticas (Fitoplâncton, zooplâncton e zoobentos):um estudo de caso no Rio Paranapanema (SP/PR). In Nogueira, M. G., R. Henry & A. Jorcin (eds), Ecologia de reservatórios: impactos potenciais, ações de manejo e sistemas em cascata. Rima, São Carlos: 83–125.

    Google Scholar 

  • Nogueira, M. G., M. Ferrareze, M. L. Moreira & R. M. Gouvêa, 2010. Phytoplankton assemblages in a reservoir cascade of a large tropical—subtropical river (SE, Brazil), Brazilian. Journal of Biology 70: 781–793.

    CAS  Google Scholar 

  • Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie–BeiheftErgebnisse der Limnologie 14: 14–36.

    CAS  Google Scholar 

  • Obolewski, K., 2011. Macrozoobenthos patterns along environmental gradients and hydrological connectivity of oxbow lakes. Ecological Engineering 37: 796–805.

    Article  Google Scholar 

  • Økland, R. H., 1999. On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Science 10: 131–136.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R.,& Wagner, H. 2017. Vegan: Community Ecology Package. R package version 2.4-3. Austria: R Foundation for Statistical Computing. Retrieved from: https://CRAN.R-project.org/package=vegan

  • Oliveira, E. F., E. Goulart & C. V. Minte-Vera, 2004. Fish diversity along spatial gradients in the Itaipu Reservoir, Paraná, Brazil. Brazilian Journal of Biology 64: 447–458.

    Article  CAS  Google Scholar 

  • Oliveira, A. G., H. I. Suzuki, L. C. Gomes & A. A. Agostinho, 2015. Interspecific variation in migratory fish recruitment in the Upper Paraná River: effects of the duration and timing of floods. Environmental Biology Fish 98: 1327–1337.

    Article  Google Scholar 

  • Padial, A. A., F. Ceschin, S. A. J. Declerck, L. Meester, C. C. Bonecker, F. A. Lansac-Toha & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9(10): e111227.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peeters, E. T. H. M., R. Gylstra & J. H. Vos, 2004. Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia 519: 103–115.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Perez, G. R., 1988. Guia para elestudio de los macroinvertebrados acuaticos del departamento de Antioquia. Universidad de Antioquia, Bogota.

    Google Scholar 

  • Petsch, D. K., G. Pinha, J. D. Dias & A. M. Takeda, 2015. Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity. Hydrobiologia 745: 181–193. https://doi.org/10.1007/s10750-014-2105-0.

    Article  Google Scholar 

  • Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard & B. D. Richter, 1997. The natural flow regime. BioScience 47: 769–784.

    Article  Google Scholar 

  • Popovský, J. & L. A. Pfister, 1990. Dinophyceae (Dinoflagellida). In Ettl, H., J. Gerloff & D. Mollenhauer (eds), Süswasserflora Von Mitteleuropa. Springer, Berlin.

    Google Scholar 

  • Prescott, G. W., C. E. M. Bicudo & W. C. Vinyard, 1982. A synopsis of North American desmids. Part II: Desmidiaceae: Placodermae section 4. University of Nebraska Press, Lincoln, London: 700.

    Google Scholar 

  • R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Reichardt, K., 1990. A água em sistemas agrícolas. Editora Manole LTDA, São Paulo.

    Google Scholar 

  • Reynolds, C. S., 1993. Scales of disturbance and their roles in plankton ecology. Hydrobiologia 249: 157–171.

    Article  Google Scholar 

  • Rosenberg, D. M., P. Mccully & C. M. Pringle, 2000. Global-scale environmental effects of hydrological alterations: introduction. BioScience 50: 746–751.

    Article  Google Scholar 

  • Salmaso, N., 2010. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshwater Biology 55: 825–846.

    Article  Google Scholar 

  • Santos, N. C. L., H. S. Santana, R. M. Dias, H. L. F. Borges, V. F. Melo, W. Severi, L. C. Gomes & A. A. Agostinho, 2016. Distribution of benthic macroinvertebrates in a tropical reservoir cascade. Hydrobiologia 765: 265–275.

    Article  CAS  Google Scholar 

  • Silva, D. F. & Molion, L. 2004. Influência da variabilidade climática interanual na hidrologia da bacia do rio São Francisco. Proceedings of Congresso Brasileiro de Meterologia XIII, Fortaleza.

  • Silva, C. A., S. Train & L. C. Rodrigues, 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia 537(1): 99–109.

    Article  Google Scholar 

  • Simões, N. R., A. H. Nunes, J. D. Dias, F. A. Lansac-Tôha, L. F. Machado-Velho & C. C. Bonecker, 2015. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758: 3–17.

    Article  CAS  Google Scholar 

  • Simonsen, R., 1979. The diatom system: ideas on phylogeny. Bacillaria 2: 9–71.

    Google Scholar 

  • Straskraba, M., 1990. Limnological particularities of multiple reservoir series. Archiv Für Hydrobiologie—Beiheft, Ergebnisse der Limnologie 33: 677–678.

    Google Scholar 

  • Straskraba, M., J. G. Tundisi & A. Duncan, 1993. State-of-art of reservoir limnology and water quality management. In Straskraba, M., J. G. Tundisi & A. Duncan (eds), Comparative reservoir limnology and water quality management. Kluwer Academic Publishers, Dordrecht: 213–288.

    Chapter  Google Scholar 

  • Temponeras, M., J. Kristiansen & M. Moustaka-Gouni, 2000. Seasonal variation in phytoplankton composition and physical-chemical features of the shallow Lake Doïrani, Macedonia, Greece. Hydrobiologia 424: 109–122.

    Article  CAS  Google Scholar 

  • Thornton, K. W., 1990. Perspectives on reservoir limnology. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley-Interscience Publications, New York: 1–13.

    Google Scholar 

  • Thorp, J. H. & A. P. Covich, 2001. Ecology and classification of North American freshwater invertebrates. Academic press, San Diego.

    Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thomas & M. D. Delong, 2006. The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Article  Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to habitat templet for river systems. Freshwater Biology 31: 265–275.

    Article  Google Scholar 

  • Trivinho-Strixino, S. & G. Srixino, 1995. Larvas de chironomidae (Diptera) do estado de Sao Paulo—guia de identificação e diagnose dos gêneros. UFSCAR, Sao Carlos.

    Google Scholar 

  • Urrea-Clos, G., E. García-Berthou & S. Sabater, 2014. Factors explaining the patterns of benthic chlorophyll-a distribution in a large agricultural Iberian watershed (Guadiana river). Ecological Indicators 36: 463–469.

    Article  CAS  Google Scholar 

  • Vannote, R. R., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vörösmarty, C. J., P. B. Mcintyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan & C. R. Liermann, 2010. Global threats to human water security and river biodiversity. Nature 30: 555–561.

    Article  CAS  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science Publishers, AnnArbor, MI: 347–356.

    Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept: Extending the model to floodplain rivers. River Research and Application 10: 159–168.

    Google Scholar 

  • Ward, J. V., K. Tockner & F. Schiemer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15: 125–139.

    Article  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological analyses. Springer-Verlag, New York.

    Book  Google Scholar 

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere Jr., C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Basin-scale planning is needed to minimize impacts in mega-diverse rivers. Science 351: 128–129.

    Article  PubMed  CAS  Google Scholar 

  • Wu, T. F., B. Q. Qin, G. W. Zhu, L. C. Luo, Y. Q. Ding & G. Y. Bian, 2013. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China. Environmental Science and Pollution Research 20: 8546–8556.

    Article  PubMed  CAS  Google Scholar 

  • Ziv, G., E. Baran, S. Nam, I. Rodríguez-Iturbe & S. A. Levin, 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. PNAS 109: 5609–5619.

    Article  PubMed  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

This project was financed by the Hydroelectric Company of the São Francisco – CHESF, through the Foundation Apolônio Salles for Educational Development – FADURPE. NCLS received a doctoral Grant and Sandwich doctorate scholarship from the National Council for Scientific and Technologic Development (CNPq), and the other authors received Grants from the Coordination for Improvement of Higher Education Personnel (CAPES). EGB was supported by the Spanish Ministry of Economy and Competitiveness (Projects CGL2016-80820-R and CGL2015-69311-REDT), the Government of Catalonia (ref. 2014 SGR 484), and CAPES (visiting professorship, ref. 88881.068352/2014-01). JDD thanks CNPq to provide post-doctoral scholarship. AAA has received productivity Grants from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Carneiro Lacerda dos Santos.

Additional information

Handling editor: André Padial

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, N.C.L., García-Berthou, E., Dias, J.D. et al. Cumulative ecological effects of a Neotropical reservoir cascade across multiple assemblages. Hydrobiologia 819, 77–91 (2018). https://doi.org/10.1007/s10750-018-3630-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3630-z

Keywords

Navigation